

# Synthetic Control Under Interference: Detecting and Correcting Bias

---

Joao Alipio-Correa

Political Science & Statistics | University of Pittsburgh

Past presentations:

MPSA 2025, Pitt PolSci 2025, MapleMeth2025, PolMeth 2025, NYU 2025, MIT 2025, LAPolMeth 2025

SCM emerged as an important tool for analyzing rare political events:

- **Civil wars:** Coercion, governance, and political behavior in civil war. *Journal of Peace Research*, 2024
- **Polarization:** Partisan Enclaves and Information Bazaars: Mapping Selective Exposure to News. *Journal of Politics*, 2022
- **Far Right:** Do Voters Polarize When Radical Parties Enter Parliament? *American Journal of Political Science*, 2019
- **Religion & Politics:** Government Religious Discrimination, Support of Religion, and Societal Violence in Western Democracies. *Comparative Political Studies*, 2024
- **Political Economy:** From Rents to Welfare: Why Are Some Oil-Rich States Generous to Their People? *American Political Science Review*, 2024
- **Regimes:** The Rush to Personalize: Power Concentration after Failed Coups in Dictatorships. *British Journal of Political Science*, 2023
- **Institutional change:** Comparative politics and the synthetic control method. *American Journal of Political Science*, 2015

# Causal Inference and Interference

When policies, conflicts, or shocks *spill over* to neighboring regions, do we still have valid donor pools under Synthetic Control?

# Outline

---

1. Quick SCM & SUTVA Refresher
2. Detecting interference
3. Bias-Correction Toolkit
4. Simulation Performance
5. Interference in Applied Research
6. German Reunification Re-analysis

# What is the Synthetic Control Method (SCM)?

- Enables inference with a small number (or single) treated units;
- Build a synthetic version of the treated unit as a counterfactual weighting unaffected units.
- Potential outcomes for treated unit:
  - $Y_{1t}^N$ : Outcome in absence of intervention (counterfactual).
  - $Y_{1t}^I$ : Outcome under intervention.
- Treatment effect:

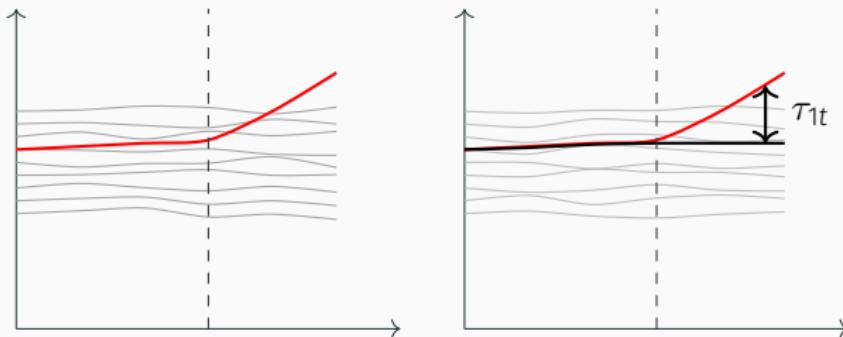
$$\tau_{1t} = Y_{1t}^I - Y_{1t}^N, \quad t > T_0.$$

# SCM: How It Works

$$\hat{Y}_{1t}^N = \sum_{j=2}^{J+1} w_j Y_{jt}, \quad t > T_0.$$

- Optimal weights  $W^*$ : Minimize discrepancy in pre-treatment characteristics and  $\|\cdot\|_V$  reflects predictors importance:

$$W^* = \arg \min_W \|X_1 - X_0 W\|_V,$$



- Stable Unit Treatment Value Assumption (SUTVA):

$$Y_{it}(Z_i, Z_{-i}) = Y_{it}(Z_i) \quad \forall i$$

*No interference: No unit's outcome depends on other units' treatment status.*

- **Crucial Assumption:** The donor units remain *untreated*. Any violation (e.g., partial exposure) can bias the synthetic estimate.
- **SUTVA violation:** Suppose donor  $j$  receives an interference term  $\delta_{jt}$ . The synthetic counterfactual becomes

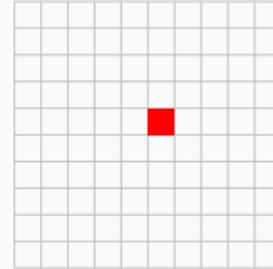
$$\hat{Y}_{it}^N = \sum_{j \neq i} w_j (Y_{jt}^N + \delta_{jt}),$$

so the estimated effect  $\hat{\tau}_{it}$  deviates by  $\sum_j w_j \delta_{jt}$  from the *true*  $\tau_{it}$ .

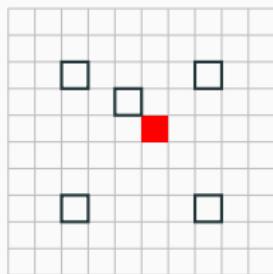
# Stages of SCM Construction



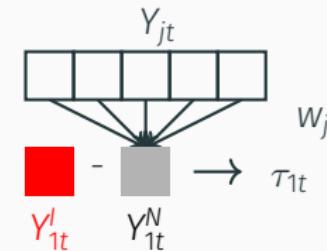
1: Units



2: Single Treated Unit



3: Units for Synthetic Control

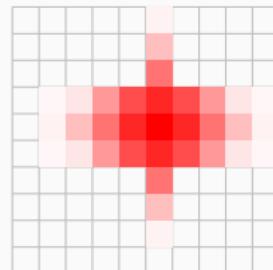


4: Treatment Effect

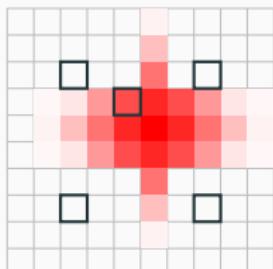
# Stages of SCM Construction



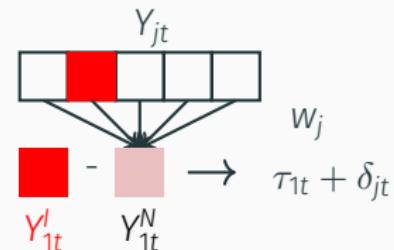
1: Units



2: Treatment diffusion



3: Units for Synthetic Control



4: Contaminated Treatment Effect

# Simulated data

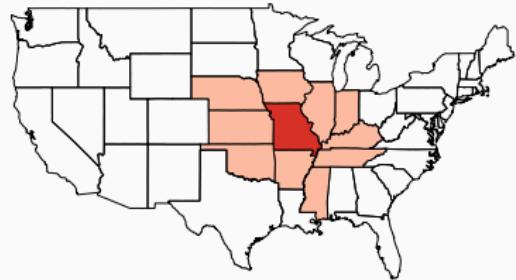


Units map

# Simulated data



Units map

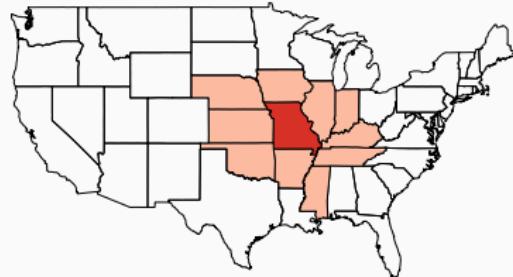


Missouri being treated

## Simulated data



Units map

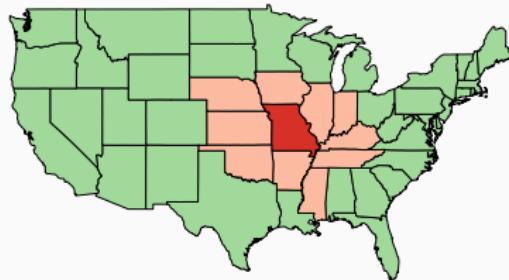


Missouri being treated

Simulated data for an intervention in Missouri with true ATT  $\tau = 4$  and interfering the outcome for nearby units by a parameter of  $\rho = 0.6$

Closer units are more affected by interference than farther away ones. But how can we compare and test if this interference is at play?

# Contrast setup



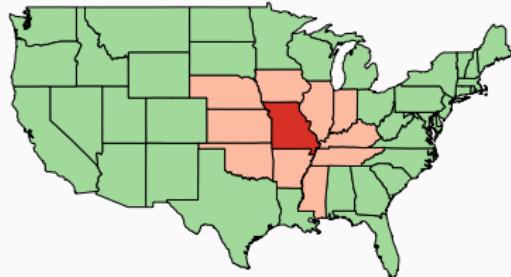
Contrast for Missouri

Let  $i \in \mathcal{U} = \{1, \dots, N\}$  index units (in this case, US states)

Fix the treated unit ( $p \in \mathcal{U}$ ) at the center and compute distances  $d_{ip}$  partitioning the space in non-overlapping rings

$$c_0 < c_1 < \dots < c_K$$

# Contrast setup



Contrast for Missouri

Let  $i \in \mathcal{U} = \{1, \dots, N\}$  index units (in this case, US states)

Fix the treated unit ( $p \in \mathcal{U}$ ) at the center and compute distances  $d_{ip}$  partitioning the space in non-overlapping rings

$$c_0 < c_1 < \dots < c_K$$

Each ring being identified as:

$$r_{ip} = k \iff c_{k-1} \leq d_{ip} < c_k, \quad k = 1, \dots, K$$

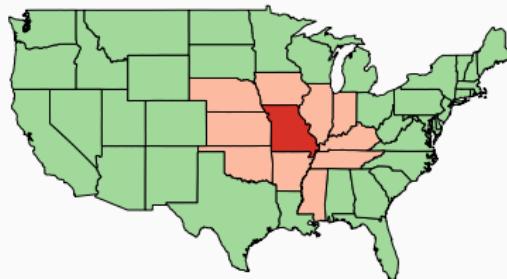
Then assign units to fully disjoint rings according to their distance from  $p$ :

- Focus ring:  $R_A \subset \{1, \dots, Q\}$
- Comparison ring:  
 $R_B \subset \{Q + 1, \dots, K\}$

And define groups:

- $A_p = \{i \neq p : r_{ip} \in R_A\}$
- $B_p = \{i \neq p : r_{ip} \in R_B\}$

## Contrast setup - Z value



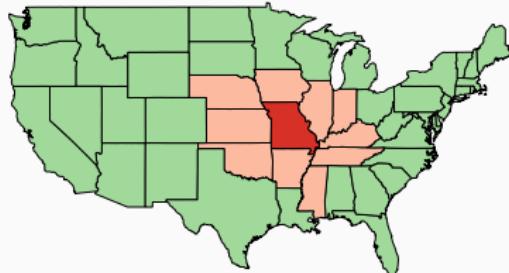
But what are we comparing?

Let  $t \in \mathcal{T}$  index time,  $T_0$  be the treatment period for unit  $p$ , and  $Y_{it}$  represent the outcome

Define two disjoint sets of periods for each window  $w$ :

$$\mathcal{T}_w^{\text{pre}}, \mathcal{T}_w^{\text{post}} \subset \mathcal{T}, \quad \mathcal{T}_w^{\text{pre}} \cap \mathcal{T}_w^{\text{post}} = \emptyset$$

# Contrast setup - Z value



But what are we comparing?

Let  $t \in \mathcal{T}$  index time,  $T_0$  be the treatment period for unit  $p$ , and  $Y_{it}$  represent the outcome

Define two disjoint sets of periods for each window  $w$ :

$$\mathcal{T}_w^{\text{pre}}, \mathcal{T}_w^{\text{post}} \subset \mathcal{T}, \quad \mathcal{T}_w^{\text{pre}} \cap \mathcal{T}_w^{\text{post}} = \emptyset$$

And set windows of interest for the difference in outcome, such as:

| $w$      | $\mathcal{T}_w^{\text{pre}}$  | $\mathcal{T}_w^{\text{post}}$ |
|----------|-------------------------------|-------------------------------|
| full     | $\{t < T_0\}$                 | $\{t > T_0\}$                 |
| year-1   | $\{T_0 - 1\}$                 | $\{T_0 + 1\}$                 |
| sym- $n$ | $\{T_0 - n, \dots, T_0 - 1\}$ | $\{T_0 + 1, \dots, T_0 + n\}$ |

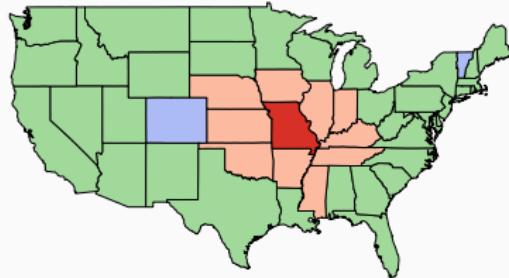
And for every unit  $i$  and window  $w$ , define a difference-in-means statistic:

$$Z_i^{(w)} = \bar{Y}_{i,\text{post}(w)} - \bar{Y}_{i,\text{pre}(w)}$$

where:  $\bar{Y}_{i,\text{post}(w)} = \frac{1}{|\mathcal{T}_w^{\text{post}}|} \sum_{t \in \mathcal{T}_w^{\text{post}}} Y_{it}$

and  $\bar{Y}_{i,\text{pre}(w)} = \frac{1}{|\mathcal{T}_w^{\text{pre}}|} \sum_{t \in \mathcal{T}_w^{\text{pre}}} Y_{it}$

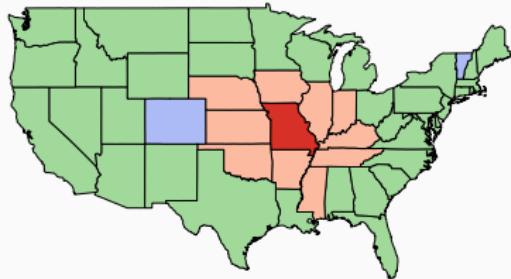
## Contrast setup - first test



$Z_i^{(w)}$  → average outcome variation  
for each  $i$  between post-pre periods  
in window  $w$ .

Anomalous values in units nearby  
the treated hint at potential  
interference

# Contrast setup - first test



$Z_i^{(w)}$  → average outcome variation for each  $i$  between post-pre periods in window  $w$ .

Anomalous values in units nearby the treated hint at potential interference

| state    | $Z^{(\text{full})}$ | $Z^{(\text{year-1})}$ | $Z^{(\text{sym-3})}$ |
|----------|---------------------|-----------------------|----------------------|
| Missouri | 4.0066              | 3.9159                | 3.9381               |
| Iowa     | 2.3640              | 2.4193                | 2.3539               |
| Colorado | -0.0414             | -0.1069               | 0.0060               |
| Vermont  | 0.02501             | -0.1115               | -0.0886              |

For each window  $w$ , collect  $Z_i^{(w)}$  for  $i \in A_p$  and  $Z_i^{(w)}$  for  $i \in B_p$ , and let

$$\bar{Z}_{A_p}^{(w)} = \frac{1}{|A_p|} \sum_{i \in A_p} Z_i^{(w)}, \quad \bar{Z}_{B_p}^{(w)} = \frac{1}{|B_p|} \sum_{i \in B_p} Z_i^{(w)}$$

denote the group means for each ring set and build:

$$t_p = \frac{\bar{Z}_{A_p} - \bar{Z}_{B_p}}{\sqrt{s_p^2 \left( \frac{1}{|A_p|} + \frac{1}{|B_p|} \right)}}$$

Large  $|t_p| \Rightarrow$  evidence that proximity ring(s) differ in mean outcome change relative to farther rings

## Contrast setup - randomization

Checking whether average  $\neq$  units farther away from  
for nearby units treated unit (around treatment) ✓

Can we reject the null of no interference?

## Contrast setup - randomization

Checking whether average  $\neq$  units farther away from  
for nearby units treated unit (around treatment) ✓

Can we reject the null of no interference?

**Randomization inference:**

$H_0 : \left\{ Z_i^{(w)} \right\}_{i \in U}$  is invariant to which unit is labelled “treated”.

i.e.: Pattern of interference around treated unit is no different than the pattern around any other unit in the space

# Contrast setup - randomization II

## Algorithm

1. Compute  $t_p$  for every  $p \in \mathcal{U}$  as above.
2. Let  $t_0$  be the statistic for the **actual treated unit**  $p = p^*$ .
3. Exact two-sided  $p$ -value:

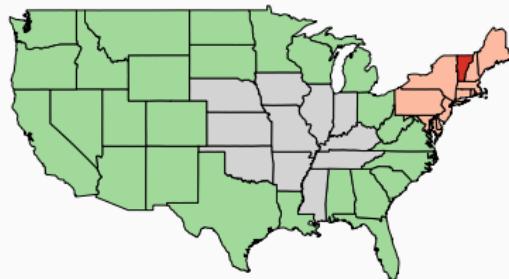
$$\hat{p} = \frac{1 + \sum_{p \in \mathcal{U}} \mathbf{1}(|t_p| \geq |t_0|)}{N + 1}$$

# Contrast setup - randomization II

## Algorithm

1. Compute  $t_p$  for every  $p \in \mathcal{U}$   
as above.
2. Let  $t_0$  be the statistic for the  
**actual treated unit**  $p = p^*$ .
3. Exact two-sided  $p$ -value:

$$\hat{p} = \frac{1 + \sum_{p \in \mathcal{U}} \mathbf{1}(|t_p| \geq |t_0|)}{N + 1}$$



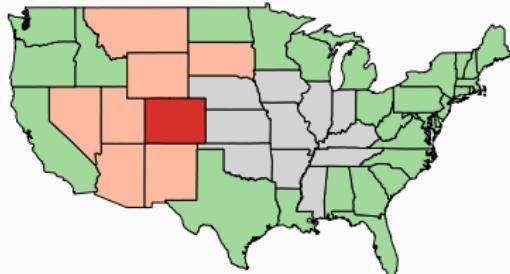
Contrast for Vermont

# Contrast setup - randomization II

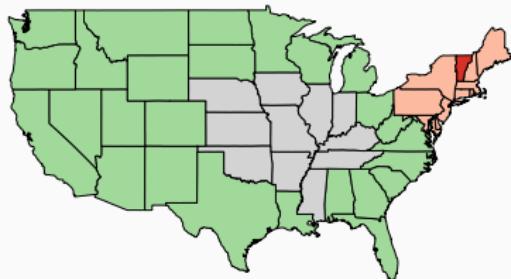
## Algorithm

1. Compute  $t_p$  for every  $p \in \mathcal{U}$  as above.
2. Let  $t_0$  be the statistic for the **actual treated unit**  $p = p^*$ .
3. Exact two-sided  $p$ -value:

$$\hat{p} = \frac{1 + \sum_{p \in \mathcal{U}} \mathbf{1}(|t_p| \geq |t_0|)}{N + 1}$$



Contrast for Colorado



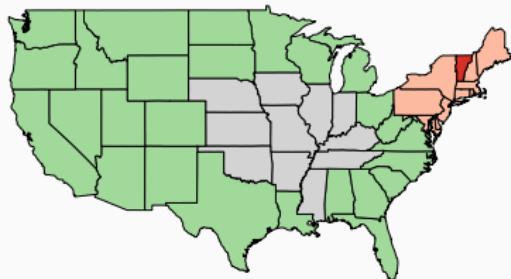
Contrast for Vermont

# Contrast setup - randomization II

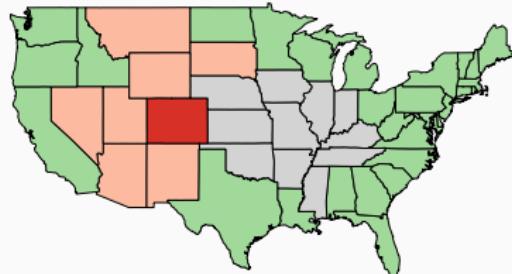
## Algorithm

1. Compute  $t_p$  for every  $p \in \mathcal{U}$  as above.
2. Let  $t_0$  be the statistic for the **actual treated unit**  $p = p^*$ .
3. Exact two-sided  $p$ -value:

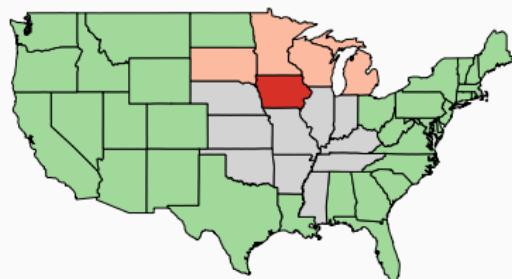
$$\hat{p} = \frac{1 + \sum_{p \in \mathcal{U}} \mathbf{1}(|t_p| \geq |t_0|)}{N + 1}$$



Contrast for Vermont



Contrast for Colorado



Contrast for Iowa

# Contrast setup- randomization II

## Algorithm

1. Compute  $t_p$  for every  $p \in \mathcal{U}$  as above.
2. Let  $t_0$  be the statistic for the **actual treated unit**  $p = p^*$ .
3. Exact two-sided  $p$ -value:

$$\hat{p} = \frac{1 + \sum_{p \in \mathcal{U}} \mathbf{1}(|t_p| \geq |t_0|)}{N + 1}$$

| state | $t_p$   | $A_p$           | $B_p$           |
|-------|---------|-----------------|-----------------|
| MO    | 4.4207  | AR, IL, IN, ... | AL, AZ, CA, ... |
| VT    | -0.2169 | CT, DE, ME, ... | AL, AZ, CO, ... |
| CO    | 0.3428  | AZ, MT, NV, ... | AL, CA, CT, ... |
| IA    | -0.3312 | MI, MN, SD, ... | AL, AZ, CA, ... |

And from this simulated scenario  
we obtained  $p$ -value = 0.0408

## Contrast setup - alternative contrasts

Where does it end?

Detecting whether interference is  
present ✓

Detecting where interference is no  
longer statistically significant:

## Contrast setup - alternative contrasts

Where does it end?

Detecting whether interference is present ✓

Detecting where interference is no longer statistically significant:

Instead of contrasting

$A_{p^*} = \{i \neq p^* : r_{ip^*} = 1\}$  vs.

$B_{p^*} = \{i \neq p^* : r_{ip^*} \in \{2, 3, 4, 5\}\}$

to obtain the standard  $t_{p^*}^{(1 \text{ vs } 2:5)}$

Contrast:  $A_{p^*} = \{i \neq p^* : r_{ip^*} = 2\}$  vs.

$B_{p^*} = \{i \neq p^* : r_{ip^*} \in 3\} \rightarrow t_{p^*}^{(2 \text{ vs } 3)}$

# Contrast setup - alternative contrasts

Where does it end?

Detecting whether interference is present ✓

Detecting where interference is no longer statistically significant:

Instead of contrasting

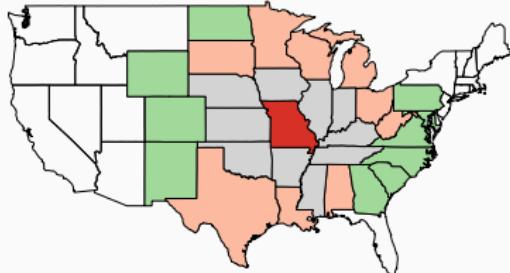
$A_{p^*} = \{i \neq p^* : r_{ip^*} = 1\}$  vs.

$B_{p^*} = \{i \neq p^* : r_{ip^*} \in \{2, 3, 4, 5\}\}$

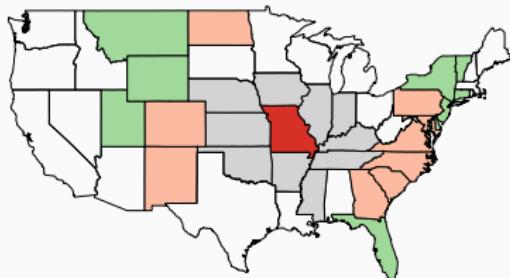
to obtain the standard  $t_{p^*}^{(1 \text{ vs } 2:5)}$

Contrast:  $A_{p^*} = \{i \neq p^* : r_{ip^*} = 2\}$  vs.

$B_{p^*} = \{i \neq p^* : r_{ip^*} \in 3\} \rightarrow t_{p^*}^{(2 \text{ vs } 3)}$



2 vs 3 Contrast for Missouri,  $p = 0.9591$



3 vs 4 Contrast for Colorado,  $p = 0.5102041$

# Interference Confirmed. Now What?

## Interference ✓

Two options:

- 1. *Keeping them unmodified* leads to biased synthetic estimates.
- 2. *Simply dropping* suspect donors might degrade the pre-treatment match.

# Interference Confirmed. Now What?

## Interference ✓

Two options:

- 1. *Keeping them unmodified* leads to biased synthetic estimates.
- 2. *Simply dropping* suspect donors might degrade the pre-treatment match.

2.1 But at least now we are able to make an informed decision on which units to drop

# Interference Confirmed. Now What?

## Interference ✓

Two options:

- 1. *Keeping them unmodified* leads to biased synthetic estimates.
- 2. *Simply dropping* suspect donors might degrade the pre-treatment match.

2.1 But at least now we are able to make an informed decision on which units to drop

- 3. *Adjust for it:* Use a secondary set of weights to attenuate contamination in the donor pool

Spatial reach measure as the weights

## Spatial Reach: A Continuous Proximity Index

- For donor  $j$ , let  $d_j$  be its distance to the treated unit.

$$\text{SR}_j = \frac{1}{1 + \exp[-\kappa(d_j - c)]},$$

- $c$  is typically the *mean* or *median* distance to center the logistic curve.
- $\kappa$  scales how steeply  $\text{SR}_j$  transitions from near 0 to near 1.
- Parameter Tuning:**  $\kappa$  trimmed between the 2.5% and 97.5% percentiles of  $\{d_j\}$ , ensuring a smooth but complete range.
- Interpretation:**  $\text{SR}_j \approx 0$  if donor  $j$  is very close, and  $\approx 1$  if it is far.

# Bias Correction Strategies

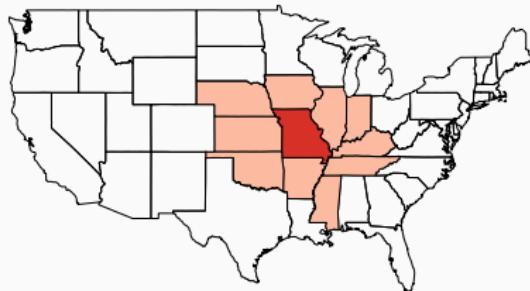
| Solution            | Optimization                                                           | Simplex | Consequence                                                      |
|---------------------|------------------------------------------------------------------------|---------|------------------------------------------------------------------|
| Rescaling           | $\min_w \ X_1 - X_0^* w\ ^2$<br>with $X_{k,j}^* = X_{k,j} \times SR_j$ | ✓       | Downweights exposed units;<br>Retains convex weights             |
| Ridge constrained   | $\min_w \ X_1 - X_0 w\ ^2 + \lambda \sum_j SR_j w_j^2$                 | ✓       | Penalize large SCM weights<br>Moderate contamination             |
| Ridge unconstrained | $\min_w \ X_1 - X_0 w\ ^2 + \lambda \sum_j SR_j w_j^2$                 | ✗       | Allows negative SCM weights<br>Aggressively offset contamination |

Simplex constraint:  $w_j \geq 0, \sum_j w_j = 1$

- Units are only allowed to have positive weights
- Unit weights add up to 1

# US Simulation

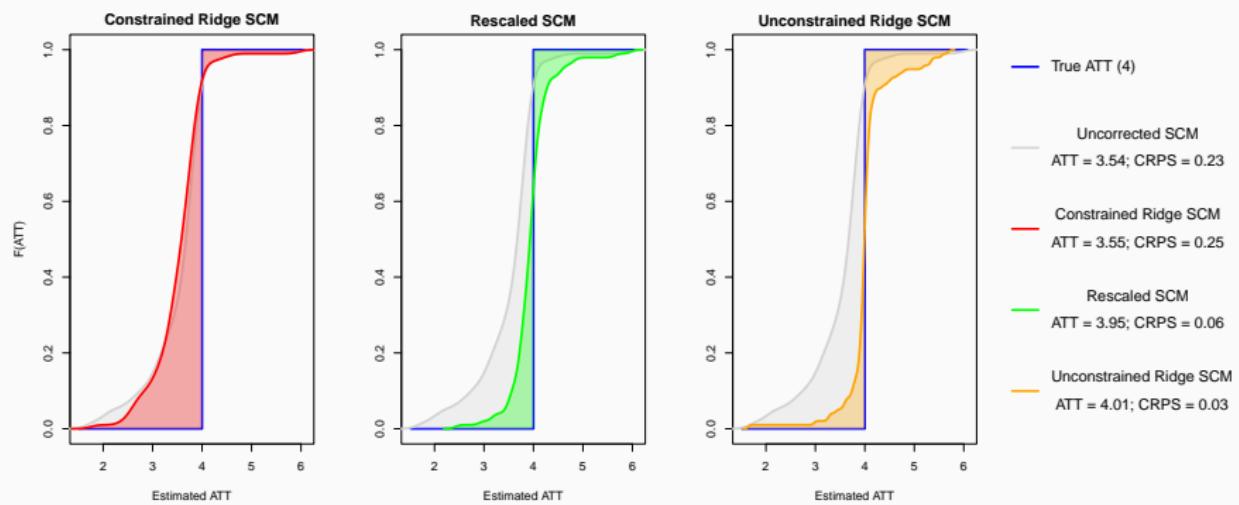
**Setup:** Intervention in Missouri with true effect size  $\tau = 4$  and spillover intensity  $\rho = 0.6$ .



Compare the uncorrected biased SCM versus the three correction approaches

**Metrics:** Bias in the estimated ATT, pre-treatment RMSE, and CRPS.

# US Simulation results



Simulation under  $\tau = 4$  and  $\rho = 0.6$

Consistent across all effect sizes  $\tau$  and spillover intensity  $\rho$

# Interference in Applied Research

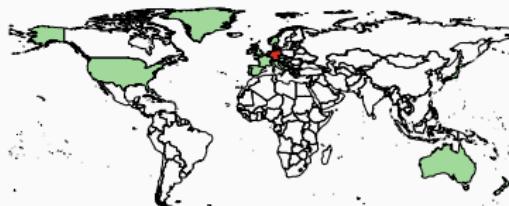


Abadie et al (2003) Conflict in the Basque  
 $p = 0.22$

# Interference in Applied Research



Abadie et al (2003) Conflict in the Basque  
 $p = 0.22$

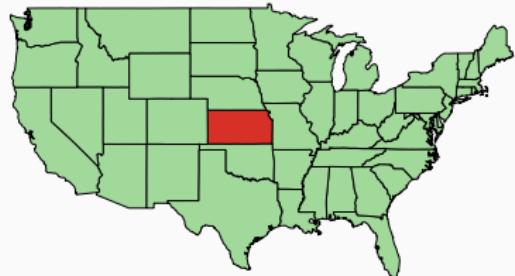


Abadie et al (2015) German Reunification  
 $p = 0.46$

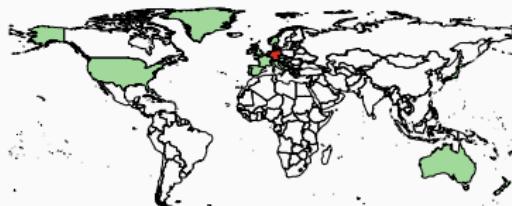
# Interference in Applied Research



Abadie et al (2003) Conflict in the Basque  
 $p = 0.22$



Ben-Michael et al (2021) Kansas tax cut  
 $p = 0.18$

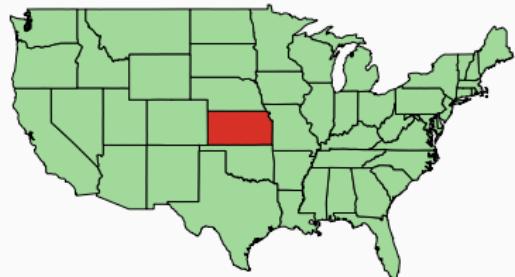


Abadie et al (2015) German Reunification  
 $p = 0.46$

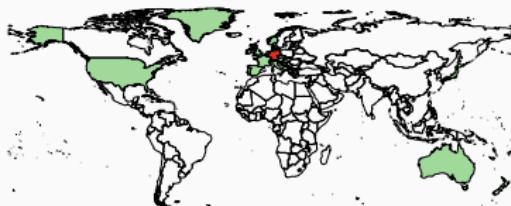
# Interference in Applied Research



Abadie et al (2003) Conflict in the Basque  
 $p = 0.22$



Ben-Michael et al (2021) Kansas tax cut  
 $p = 0.18$



Abadie et al (2015) German Reunification  
 $p = 0.46$



Kikuta (2020); Civil war and deforestation  
 $p = 0.33$

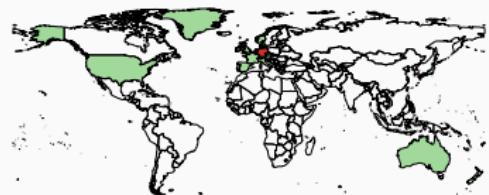
# Interference in Applied Research

| Application              | Coverage | Interference |
|--------------------------|----------|--------------|
| Abadie et al (2003)      | ✓        | ✗            |
| Ben-Michael et al (2021) | ✓        | ✗            |
| Abadie et al (2015)      | ✗        | ✗            |
| Kikuta (2019)            | ✗        | ✗            |

# Interference in Applied Research

| Application                   | Coverage | Interference |
|-------------------------------|----------|--------------|
| Abadie et al (2003)           | ✓        | ✗            |
| Ben-Michael et al (2021)      | ✓        | ✗            |
| Abadie et al (2015)           | ✗        | ✗            |
| Kikuta (2019)                 | ✗        | ✗            |
| Expanded German Reunification | ✓        | ✓            |

# Interference in Applied Research

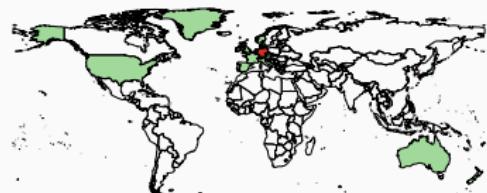


| Application                   | Coverage | Interference |
|-------------------------------|----------|--------------|
| Abadie et al (2003)           | ✓        | ✗            |
| Ben-Michael et al (2021)      | ✓        | ✗            |
| Abadie et al (2015)           | ✗        | ✗            |
| Kikuta (2019)                 | ✗        | ✗            |
| Expanded German Reunification | ✓        | ✓            |

Abadie et al (2015) German Reunification  
 $p = 0.46$

# Interference in Applied Research

| Application                   | Coverage | Interference |
|-------------------------------|----------|--------------|
| Abadie et al (2003)           | ✓        | ✗            |
| Ben-Michael et al (2021)      | ✓        | ✗            |
| Abadie et al (2015)           | ✗        | ✗            |
| Kikuta (2019)                 | ✗        | ✗            |
| Expanded German Reunification | ✓        | ✓            |



Abadie et al (2015) German Reunification  
 $p = 0.46$



Expanded German Reunification  
 $p = 0.016$

# Interference in Applied Research

Researchers try to address SUTVA violations and patterns of interference by removing units → results conditioned on contagion

Risk → dropping too many units

Under Potential Outcomes, the DGP and a suitable identification strategy depends on: empirics AND how the missing potential outcome is set up

- In the SCM case: which units are in the donor pool

# Replication Examples

Comparative politics and the synthetic control method (Abadie, Diamond, & Hainmueller, 2015): German Reunification

| Approach                   | Metric   | Germany |
|----------------------------|----------|---------|
| Base                       | ATT      | -1549.9 |
|                            | Pre-RMSE | 119.08  |
| Rescaled                   | ATT      | -1601.5 |
|                            | Pre-RMSE | 279.03  |
| Penalized, Constrained *   | ATT      | -1103.4 |
|                            | Pre-RMSE | 80.43   |
| Penalized, Unconstrained * | ATT      | 136.1   |
|                            | Pre-RMSE | 59.5    |

*Rescaling* adjusted for contamination → larger effect

*Constrained Ridge* adjust for contamination and large weights → attenuation

*Unconstrained Ridge* extrapolate simplex for aggressive correction → reversal

### A) Detection

- **Coverage:** Ensure proper donor units coverage to compose the missing potential outcome;
- **Detection test:** Using randomization inference, assess whether interference is at place in the empirical setting;
- **Alternative contrast:** By adapting the contrast, identify where interference is no longer detected;
- **Detect Interference First:** If no violation is detected, standard SCM suffices;

### B) Correction

- **SR weight:** If interference  $\rightarrow$  subject the SCM optimization problem to network-specific weights;
- **Minor to moderate interference:** Rescaling or Constrained Ridge can mitigate moderate bias while retaining the notion of a convex combination.;
- **Severe Interference:** Unconstrained Ridge achieves lower bias at the cost of extrapolating out of the simplex;

# Ongoing Extensions

- Inverse Propensity Weighting for Rescaling Approach

HT–Hájek Spatial Weights

Spatial–reach  $f(d)$  as propensity to avoid spillover:  $\pi_i = 1 - f(d_{iD})$

Use stabilized Horvitz–Thompson weights

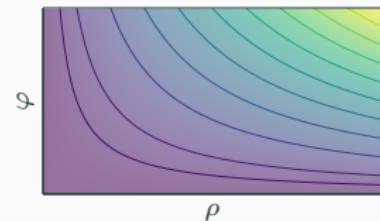
$$w_i = \frac{1/\pi_i}{\sum_j 1/\pi_j} \text{ inside SCM}$$

- Multiple Comparison & Dynamic Networks
- Sensitivity to Interference

Inject controlled spillovers in outcomes & covariates: intensity  $\rho \in [0, 1]$ , decay  $\varphi$

Re-run SCM over a  $(\rho, \varphi)$  grid; track standardized shift

Contours show ATT shift required to overturn conclusions



(Lighter → larger ATT shift)