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SCM in Political Science

SCM emerged as an important tool for analyzing rare political events:
• Civil wars: Coercion, governance, and political behavior in civil war. Journal of Peace
Research, 2024

• Polarization: Partisan Enclaves and Information Bazaars: Mapping Selective Exposure to
News. Journal of Politics, 2022

• Far Right: Do Voters Polarize When Radical Parties Enter Parliament? American Journal of
Political Science, 2019

• Religion & Politics: Government Religious Discrimination, Support of Religion, and Societal
Violence in Western Democracies. Comparative Political Studies, 2024

• Political Economy: From Rents to Welfare: Why Are Some Oil-Rich States Generous to Their
People? American Political Science Review, 2024

• Regimes: The Rush to Personalize: Power Concentration after Failed Coups in Dictatorships.
British Journal of Political Science, 2023

• Institutional change: Comparative politics and the synthetic control method. American
Journal of Political Science, 2015
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Causal Inference and Interference

When policies, conflicts, or shocks spill over to neighboring regions,
do we still have valid donor pools under Synthetic Control?
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What is the Synthetic Control Method (SCM)?

• Enables inference with a small number (or single) treated units;
• Build a synthetic version of the treated unit as a counterfactual
weighting unaffected units.

• Potential outcomes for treated unit:
• YN1t: Outcome in absence of intervention (counterfactual).
• YI1t: Outcome under intervention.

• Treatment effect:

τ1t = YI1t − YN1t, t > T0.
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SCM: How It Works

ŶN1t =
J+1∑
j=2

wjYjt, t > T0.

• Optimal weights W∗: Minimize discrepancy in pre-treatment
characteristics and ∥ · ∥V reflects predictors importance:

W∗ = argmin
W

∥X1 − X0W∥V,

τ1t

5



SCM and SUTVA

• Stable Unit Treatment Value Assumption (SUTVA):

Yit(Zi, Z−i) = Yit(Zi) ∀i

No interference: No unit’s outcome depends on other units’
treatment status.

• Crucial Assumption: The donor units remain untreated. Any
violation (e.g., partial exposure) can bias the synthetic estimate.

• SUTVA violation: Suppose donor j receives an interference term
δjt. The synthetic counterfactual becomes

ŶNit =
∑
j ̸=i

wj (YNjt + δjt),

so the estimated effect τ̂it deviates by
∑

j wjδjt from the true τit.
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Stages of SCM Construction

1: Units 2: Single Treated Unit

3: Units for Synthetic Control

Yjt

wj

YN1tYI1t

- τ1t

4: Treatment Effect
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Stages of SCM Construction

1: Units 2: Treatment diffusion

3: Units for Synthetic Control

Yjt

wj

YN1tYI1t

- τ1t + δjt

4: Contaminated Treatment Effect
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Simulated data

Units map

Missouri being treated

Simulated data for an intervention in Missouri with true ATT τ = 4
and interfering the outcome for nearby units by a parameter of
ρ = 0.6

Closer units are more affected by interference than farther away
ones. But how can we compare and test if this interference is at play?
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Contrast setup

Contrast for Missouri

Let i ∈ U = {1, . . . ,N} index units (in
this case, US states)

Fix the treated unit (p ∈ U ) at the
center and compute distances dip
partitioning the space in
non-overlapping rings

c0 < c1 < · · · < cK

Each ring being identified as:

rip = k ⇐⇒ ck−1 ≤ dip < ck, k = 1, . . . , K

Then assign units to fully disjoint
rings according to their distance
from p:

• Focus ring: RA ⊂ {1, . . . ,Q}

• Comparison ring:
RB ⊂ {Q+ 1, . . . , K}

And define groups:

• Ap = {i ̸= p : rip ∈ RA}

• Bp = {i ̸= p : rip ∈ RB}
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Contrast setup - Z value

But what are we comparing?
Let t ∈ T index time, T0 be the

treatment period for unit p, and Yit
represent the outcome

Define two disjoint sets of periods
for each window w:

T pre
w , T post

w ⊂ T , T pre
w ∩ T post

w = ∅

And set windows of interest for the
difference in outcome, such as:

w T pre
w T post

w

full {t < T0} {t > T0}
year-1 {T0 − 1} {T0 + 1}
sym-n {T0 − n, . . . , T0 − 1} {T0 + 1, . . . , T0 + n}

And for every unit i and window w, define a
difference-in-means statistic:

Z(w)i = Ȳi,post(w) − Ȳi,pre(w)

where: Ȳi,post(w) =
1

|T post
w |

∑
t∈T post

w

Yit

and Ȳi,pre(w) =
1

|T pre
w |

∑
t∈T pre

w

Yit
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Contrast setup - first test

Z(w)i → average outcome variation
for each i between post-pre periods
in window w.

Anomalous values in units nearby
the treated hint at potential
interference

state Z(full) Z(year-1) Z(sym-3)

Missouri 4.0066 3.9159 3.9381
Iowa 2.3640 2.4193 2.3539
Colorado -0.0414 -0.1069 0.0060
Vermont 0.02501 -0.1115 -0.0886

For each window w, collect Z(w)i for
i ∈ Ap and Z(w)i for i ∈ Bp, and let

Z̄(w)Ap =
1

|Ap|
∑
i∈Ap

Z(w)i , Z̄(w)Bp =
1

|Bp|
∑
i∈Bp

Z(w)i

denote the group means for each
ring set and build:

tp =
Z̄Ap − Z̄Bp√

s2P
(

1
|Ap|

+ 1
|Bp|

)
Large |tp| ⇒ evidence that proximity
ring(s) differ in mean outcome
change relative to farther rings
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Contrast setup - randomization

Checking whether average ̸= units farther away from 3

for nearby units treated unit (around treatment)

Can we reject the null of no interference?

Randomization inference:

H0 :
{
Z(w)i

}
i∈U

is invariant to which unit is labelled “treated”.

i.e.: Pattern of interference around treated unit is no different than the
pattern around any other unit in the space
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Contrast setup - randomization II
Algorithm
1. Compute tp for every p ∈ U
as above.

2. Let t0 be the statistic for the
actual treated unit p = p⋆.

3. Exact two-sided p-value:

p̂ =
1 +

∑
p∈U 1(|tp| ≥ |t0|)
N + 1

Contrast for Vermont

Contrast for Colorado

Contrast for Iowa
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Contrast setup- randomization II

Algorithm

1. Compute tp for every p ∈ U as
above.

2. Let t0 be the statistic for the
actual treated unit p = p⋆.

3. Exact two-sided p-value:

p̂ =
1 +

∑
p∈U 1(|tp| ≥ |t0|)
N + 1

state tp Ap Bp

MO 4.4207 AR, IL, IN, … AL, AZ, CA, …
VT -0.2169 CT, DE, ME, … AL, AZ, CO, …
CO 0.3428 AZ, MT, NV, … AL, CA, CT, …
IA -0.3312 MI, MN, SD, … AL, AZ, CA, …

And from this simulated scenario
we obtained p-value = 0.0408
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Contrast setup - alternative contrasts

Where does it end?
Detecting whether interference is
present 3

Detecting where interference is no
longer statistically significant:

Instead of contrasting
Ap⋆ = {i ̸= p⋆ : rip⋆ = 1} vs.
Bp⋆ = {i ̸= p⋆ : rip⋆ ∈ {2, 3, 4, 5}
to obtain the standard t(1 vs 2:5)p⋆

Contrast: Ap⋆ = {i ̸= p⋆ : rip⋆ = 2} vs.
Bp⋆ = {i ̸= p⋆ : rip⋆ ∈ 3} → t(2 vs 3)p⋆

2 vs 3 Contrast for Missouri, p = 0.9591

3 vs 4 Contrast for Colorado, p = 0.5102041
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Interference Confirmed. Now What?

Interference 3

Two options:

• 1. Keeping them unmodified leads to biased synthetic estimates.
• 2. Simply dropping suspect donors might degrade the
pre-treatment match.

2.1 But at least now we are able to make an informed
decision on which units to drop

• 3. Adjust for it: Use a secondary set of weights to attenuate
contamination in the donor pool

Spatial reach measure as the weights
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Spatial Reach: A Continuous Proximity Index

• For donor j, let dj be its distance to the treated unit.

SRj =
1

1+ exp
[
−κ(dj − c)

] ,
• c is typically the mean or median distance to center the logistic
curve.

• κ scales how steeply SRj transitions from near 0 to near 1.

• Parameter Tuning: κ trimmed between the 2.5% and 97.5%
percentiles of {dj}, ensuring a smooth but complete range.

• Interpretation: SRj ≈ 0 if donor j is very close, and ≈ 1 if it is far.
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Bias Correction Strategies

Solution Optimization Simplex Consequence

Rescaling min
w

∥∥X1 − X∗0 wj
∥∥2 3 Downweights exposed units;

with X∗k,j = Xk,j × SRj Retains convex weights

Ridge constrained min
w

∥∥X1 − X0 wj
∥∥2+ 3 Penalize large SCM weights

λ
∑

j SRj w2j Moderate contamination

Ridge min
w

∥∥X1 − X0 wj
∥∥2+ 7 Allows negative SCM weights

unconstrained λ
∑

j SRj w2j Aggressively offset contamination

Simplex constraint: wj ≥ 0,
∑

j wj = 1
• Units are only allowed to have positive weights

• Unit weights add up to 1
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US Simulation

Setup: Intervention in Missouri with true effect size τ = 4 and
spillover intensity ρ = 0.6.

Compare the uncorrected biased SCM versus the three correction
approaches
Metrics: Bias in the estimated ATT, pre-treatment RMSE, and CRPS.
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US Simulation results
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0.
0
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1.
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Unconstrained Ridge SCM

Estimated ATT

True ATT (4)

Uncorrected SCM

ATT = 3.54; CRPS = 0.23

Constrained Ridge SCM

ATT = 3.55; CRPS = 0.25

Rescaled SCM

ATT = 3.95; CRPS = 0.06

Unconstrained Ridge SCM

ATT = 4.01; CRPS = 0.03

Simulation under τ = 4 and ρ = 0.6

Consistent across all effect sizes τ and spillover intensity ρ
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Interference in Applied Research

Abadie et al (2003) Conflict in the Basque
p = 0.22

Abadie et al (2015) German Reunification
p = 0.46

Ben-Michael et al (2021) Kansas tax cut
p = 0.18

Kikuta (2020); Civil war and deforestation
p = 0.33

3 vs 4 Contrast for Colorado, p = 0.5102041
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Interference in Applied Research

Application Coverage Interference

Abadie et al (2003) 3 7

Ben-Michael et al (2021) 3 7

Abadie et al (2015) 7 7

Kikuta (2019) 7 7

Expanded German Reunification 3 3

Abadie et al (2015) German Reunification
p = 0.46

Expanded German Reunification
p = 0.016
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Interference in Applied Research

Researchers try to address SUTVA violations and patterns of
interference by removing units→ results conditioned on contagion

Risk→ dropping too many units

Under Potential Outcomes, the DGP and a suitable identification
strategy depends on: empirics AND how the missing potential
outcome is set up

• In the SCM case: which units are in the donor pool
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Replication Examples

Comparative politics and the synthetic control method (Abadie, Diamond, &
Hainmueller, 2015): German Reunification

Approach Metric Germany

Base ATT -1549.9
Pre-RMSE 119.08

Rescaled ATT -1601.5
Pre-RMSE 279.03

Penalized, Constrained ∗ ATT -1103.4
Pre-RMSE 80.43

Penalized, Unconstrained ∗ ATT 136.1
Pre-RMSE 59.5

Rescaling adjusted for contamination→ larger effect
Constrained Ridge adjust for contamination and large weights→ attenuation
Unconstrained Ridge extrapolate simplex for aggressive correction→
reversal
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Concluding remarks - Detection

A) Detection

• Coverage: Ensure proper donor units coverage to compose the
missing potential outcome;

• Detection test: Using randomization inference, assess whether
interference is at place in the empirical setting;

• Alternative contrast: By adapting the contrast, identify where
interference is no longer detected;

• Detect Interference First: If no violation is detected, standard
SCM suffices;
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Concluding remarks - Correction

B) Correction

• SR weight: If interference→ subject the SCM optimization
problem to network-specific weights;

• Minor to moderate interference: Rescaling or Constrained Ridge
can mitigate moderate bias while retaining the notion of a
convex combination.;

• Severe Interference: Unconstrained Ridge achieves lower bias at
the cost of extrapolating out of the simplex;
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Ongoing Extensions

• Inverse Propensity Weighting for Rescaling
Approach
HT–Hájek Spatial Weights

Spatial–reach f(d) as propensity to avoid
spillover: πi = 1− f(diD)

Use stabilized Horvitz–Thompson weights

wi =
1/πi∑
j 1/πj

inside SCM

• Multiple Comparison & Dynamic Networks

• Sensitivity to Interference

Inject controlled spillovers in outcomes &
covariates: intensity ρ∈ [0, 1], decay φ

Re-run SCM over a (ρ, φ) grid; track
standardized shift

Contours show ATT shift required to overturn
conclusions

ρ

φ

(Lighter→ larger ATT shift)
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