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1 Introduction

Synthetic control (SC) methods have become a central tool in causal inference, especially for

comparative case studies with one or a few treated units. SC is attractive because it offers a

transparent way to construct credible counterfactuals without strong functional form assumptions.

Instead of extrapolating trends from a model, SC builds a synthetic counterfactual by assigning

weights to untreated donor units so that their weighted average reproduces the treated unit’s

pre-intervention trajectory(Abadie, 2021; Abadie & Gardeazabal, 2003; Abadie et al., 2010, 2015).

Its appeal is evident in canonical applications: quantifying the effect of California’s Proposition 99

tobacco-control program on cigarette sales (Abadie et al., 2010), assessing the macroeconomic

consequences of German reunification (Abadie et al., 2015), and evaluating environmental and

health policies in comparative case studies (e.g., Kikuta, 2020; Kreif et al., 2016). The sparsity

and interpretability of SC (few key donors with explicit weights) are a large part of its appeal,

but as we discuss, they also create a unique vulnerability when there is interference or policy

spillovers between units.

This attractiveness just described comes from SC’s design. Unlike conventional difference-

in-differences (DiD), SC avoids imposing a parametric form on outcome trends and instead

constructs its counterfactual by drawing on untreated comparison units—commonly called donors.

Each donor is assigned a weight via optimization so that their average trajectory reproduces

that of the treated unit before the intervention. This pre-treatment similarity, often described

as fit, is the foundation on which SC builds its counterfactual: the method assumes that if the
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synthetic reproduces the treated unit well before the intervention, it will also approximate what

would have happened afterward in the absence of treatment (Abadie, 2021).

A potentially unrealistic assumption follows from this design choice. Because SC uses post-

treatment donor outcomes to form the counterfactual, it naturally relies on the no-interference

component of SUTVA—unit i’s outcome depends only on its own treatment, not on others’

assignments (Holland, 1986; Rubin, 1980). In spatially and networked settings, where policies

plausibly diffuse, this assumption is especially prone to violation. When policies propagate across

space or networks, outcomes may depend on neighbors’ treatments; formal treatments describe

interference by mapping the treatment vector to unit-level exposure via an exposure function

(Aronow & Samii, 2017; Hudgens & Halloran, 2008).

All causal inference designs lean on SUTVA as a baseline assumption, but SC is especially

vulnerable when spillovers are present. In designs such as difference-in-differences, matching, or

regression discontinuity (RDD), contamination can attenuate estimated effects, but the influence

of any single unit is inherently limited by the structure of the estimator. In DiD, the average

outcome of many untreated units forms the counterfactual, so spillovers from a few controls

are diluted in the aggregate. In matching, treated units are paired with multiple comparators,

reducing the leverage of any single contaminated control. In RDD, identification relies on local

contrasts around a cutoff, where spillovers near the threshold may blur the comparison but

typically affect both sides symmetrically.

By contrast, SC deliberately assigns large weights to a small set of untreated units to reproduce

the treated unit’s pre-period trajectory. If even one of these heavily weighted donors is exposed

to spillovers, the resulting contamination enters the synthetic counterfactual directly and is

magnified in proportion to the assigned weight. In this sense, interference does not simply add

noise but systematically biases the SC estimator, since the very units that best approximate the

treated unit before intervention are the ones most likely to drive bias after treatment.

Practice-oriented discussions in SC emphasize donor-pool curation to avoid such pitfalls

(Abadie, 2021), but ad hoc trimming does not resolve the underlying tension between fit and

exposure, and have other negative consequences. Related approaches—augmented or regularized

SC and factor-model variants—can stabilize estimation yet still inherit the same reliance on

uncontaminated donors in the post-period (Abadie & L’Hour, 2021; Ben-Michael et al., 2021;

Doudchenko & Imbens, 2016). A common remedy is to remove suspect neighbors or to adapt
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methods developed for settings with multiple treated units (e.g., Cavallo et al., 2013; Firpo &

Possebom, 2018; Kreif et al., 2016; Robbins & Saunders, 2017; Xu, 2017).

The central concern for our purposes is efficiency: the very donors most informative for

pre-treatment fit are often geographically proximate and thus the most at risk for spillovers;

discarding them can impose a large information cost. In practice, trimming contaminated donors

removes precisely those units that often most closely resemble the treated unit. The immediate

consequence is a weaker pre-treatment balance, as the synthetic no longer aligns as tightly with

the treated unit’s trajectory before intervention. With fewer available controls, weights are then

spread over less comparable donors, often forcing extrapolation and inflating the variance of the

estimate. For applied researchers, this creates a credibility problem: if the pre-period match

deteriorates after trimming, the very basis for trusting the post-treatment counterfactual (its

ability to track history) breaks down.

With interference, the SC estimator incorporates outcomes from donors that may themselves

be affected by the treatment. Let Y1t denote the treated unit’s outcome and Ŷ N
1t =

∑
j ̸=1wjYjt

the synthetic predictor. If donor j receives a spillover δjt in the post-treatment period, its

outcome can be written as Yjt = Yjt(0) + δjt, where Yjt(0) is the outcome absent exposure. The

synthetic predictor therefore includes an additional term
∑

j ̸=1wjδjt, so that the SC estimand

can be rewritten as τ̂t =
(
Y1t(1) −

∑
j ̸=1wjYjt(0)

)
−

∑
j ̸=1wjδjt. The first term captures the

treatment effect of interest under no interference, while the second term reflects a weighted

average of spillovers among donors. Hence, whenever exposed donors receive positive or negative

spillovers, the SC estimate is systematically biased in proportion to the weights assigned to those

donors.

We take a design-based route that targets the object through which interference contaminates

SC: the weights. The first step is a diagnostic that asks whether units located near the treated

unit evolve differently after treatment than those farther away. To formalize this, we partition

the donor pool into concentric distance rings and compare post- versus pre-treatment changes

across rings. The null hypothesis is a Fisher sharp null of no effect: outcomes should display no

systematic difference by proximity to the treated unit around treatment time. We evaluate this

null using randomization inference, which yields exact p-values in finite samples under minimal

assumptions (Bowers et al., 2017; Fisher, 1935; Rosenbaum, 2002). Naturally, this exactness

property is not tied to the SC estimator, as it follows directly from the design-based logic of
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randomization inference and holds regardless of the model used to construct counterfactuals.

Second, conditional on rejecting the null and detecting evidence of proximity-related spillovers,

we introduce three corrections that incorporate spatial reach—a continuous exposure mapping

from distance to a proximity score—directly into the SC optimization, using only pre-period

information and leaving outcomes in the post-period untouched.

Our framework rests on two key insights. First, we formalize spatial exposure using the

exposure-mapping framework from the interference literature (Aronow & Samii, 2017; Hudgens

& Halloran, 2008; Manski, 2013; Tchetgen Tchetgen & VanderWeele, 2012; T. VanderWeele,

2015) and show that, within SC, the impact of interference reduces to a single bias pathway: the

aggregate weight mass assigned to likely exposed donors. A simple decomposition makes this

link explicit and motivates both our diagnostic and the structure of the corrections. Second,

we design estimators that operate directly on this pathway while preserving, when desired, the

convex-combination interpretation that makes SC attractive for applied work.

The central problem in place is sensitivity to interference: because SC constructs the counter-

factual from post-treatment outcomes of untreated donors, any positive weight on donors whose

outcomes are affected by spillovers propagates that exposure into the synthetic and, hence, into

the estimated effect.

Our adjustments address this problem by modifying the geometry of the estimator so as to limit

the influence of proximate donors, each in a distinct way. Covariate rescaling alters the predictor

space itself: by multiplying each donor’s predictor column by a proximity score, nearby donors

appear less similar to the treated unit, shifting the feasible convex hull toward safer comparisons

while weights remain on the simplex. Constrained ridge leaves the predictor space unchanged but

penalizes exposure directly in the weight optimization: an exposure-weighted ℓ2 penalty shrinks

mass away from high-risk donors while preserving convexity and the interpretation of weights as

a convex combination, linking directly to penalized SC variants that temper extrapolation with

regularization (Abadie & L’Hour, 2021; Ben-Michael et al., 2021; Doudchenko & Imbens, 2016).

Unconstrained ridge relaxes the simplex entirely, allowing negative and non-summing weights,

and applies an exposure-weighted ridge penalty to dampen or even offset contaminated donors;

this yields the most aggressive reduction of exposure risk but sacrifices the convex-combination

interpretation, following the classical ridge/Tikhonov tradition (Hastie et al., 2009; Hoerl &

Kennard, 1970). In all three cases, geographic or network structure provides an exogenous
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measure of proximity, and tuning is based solely on pre-treatment information, ensuring that

adjustments are guided by design rather than post-treatment outcomes.

Our evidence is designed both to evaluate the properties of the proposed adjustments and to

demonstrate their usefulness in applied settings. We begin with a simulation study that varies

the magnitude of the treated effect and the intensity of spillovers, showing that baseline SC

can be substantially biased while the adjustments consistently reduce bias without sacrificing

pre-treatment fit. We then turn to four canonical applications. Applying the ring diagnostic to

the original donor pools in Abadie et al. (2010), Abadie et al. (2015), and Kikuta (2020), as well

as to a U.S. policy case of the sort considered by Ben-Michael et al. (2021), we find no evidence

of interference in the original designs. By contrast, when we expand the West Germany study

to a broad, data-complete donor set (roughly 150 countries constructed to mirror the original

predictors and preprocessing), the diagnostic detects interference. On that expanded design,

the spatial-reach corrections materially alter the estimated effect, underscoring the practical

consequences of explicitly accounting for spillovers in SC.

The paper is organized as follows. Section 2 situates SUTVA in SC and reviews exposure

mappings for interference. Section 3 develops the ring diagnostic and randomization test.

Section 4.1 introduces spatial reach and covariate rescaling. Section 5 develops constrained ridge;

an unconstrained ridge variant follows thereafter. We then report simulations and revisit the

empirical applications, including the expanded West Germany design. A final section discusses

practical guidance for diagnosis, design, and interpretation when interference is a live concern in

synthetic control analyses.

1.1 Relevant literature

Our work connects to and extends several strands of recent literature on synthetic control,

interference, and spatial dependence. First, a large literature has generalized the original SC

framework of Abadie and Gardeazabal (2003) and Abadie et al. (2010, 2015) into a broader class

of regularized and factor-based panel estimators. The Augmented Synthetic Control Method of

Ben-Michael et al. (2021) blends SC with outcome regression to obtain doubly robust estimates

and improved pre-treatment balance even when a pure SC fit is poor. Abadie and L’Hour (2021)

propose a penalized synthetic control estimator that introduces an ℓ2 penalty on weights to

stabilize estimation in disaggregated settings. Related approaches recast SC within low-rank or
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interactive fixed-effects frameworks, including matrix completion methods for causal panel data

(Athey et al., 2021), generalized synthetic control (Xu, 2017), synthetic difference-in-differences

(Arkhangelsky et al., 2021), and comparisons of SC to interactive fixed-effects models in applied

regional evaluations (e.g., Gobillon & Magnac, 2016). These methods primarily address bias from

extrapolation and limited pre-treatment fit; by contrast, our focus is on bias from interference, and

our exposure-weighted adjustments can, in principle, be combined with any of these estimators.

Second, our framework builds on the potential-outcomes literature on interference and exposure

mappings. Hudgens and Halloran (2008) and Aronow and Samii (2017) formalize interference

by mapping the joint treatment assignment into unit-level exposure variables and studying

identification under partial interference. Subsequent work has developed sensitivity analyses

and estimands under unknown or complex interference patterns (e.g., Manski, 2013; Sävje et al.,

2021; Tchetgen Tchetgen & VanderWeele, 2012; T. VanderWeele, 2015; T. J. VanderWeele

et al., 2014). Randomization-based approaches extend Fisherian inference to interference settings

using exposure mappings and exact tests (Athey et al., 2018; Basse et al., 2019; Bowers et al.,

2017). We adopt this design-based perspective: geography (or a known network) provides an

exposure mapping, and our ring diagnostic is a randomization test tailored to proximity-patterned

interference in SC designs.

Third, there is a growing literature that directly studies spillovers in SC and closely related

factor-model estimators. Cao and Dowd (2019) analyze estimation and inference for SC in the

presence of spillover effects under a linear factor structure, while Di Stefano and Mellace (2020)

propose the inclusive Synthetic Control Method. Parallel developments in spatial econometrics

model spillovers parametrically through spatial-lag or SLX specifications and have been combined

with difference-in-differences designs to separate direct and indirect effects (Delgado & Florax,

2015; Vega & Elhorst, 2015). Our contribution is complementary: rather than specifying a

parametric spatial-lag model or a factor structure for spillovers, we use an exposure mapping and

pre-treatment-only information to (i) diagnose proximity-patterned spillovers and (ii) modify the

SC weight geometry so as to limit the influence of exposed donors.

6



2 Spatial/Network Dependence and SUTVA in Synthetic Control

2.1 Synthetic control versus other designs under interference

Causal analyses of comparative case designs rest on the Stable Unit Treatment Value Assumption

(SUTVA), which asserts that unit i’s potential outcome under a joint assignment (z1, . . . , zJ+1)

depends only on its own assignment zi, and that there are no hidden versions of treatment

(Holland, 1986; Rubin, 1980). Formally, SUTVA restricts Yi(z1, . . . , zJ+1) to Yi(zi) and guarantees

a single well-defined potential outcome for each treatment level. Together with consistency

(Y obs
i = Yi(zi)), this delivers the identification bridge that causal designs exploit: when a

donor j is untreated (zj = 0), its observed outcome equals its no-treatment potential outcome,

Y obs
jt = Yjt(0), regardless of the assignments received by other units.

Hence untreated units can supply information about the missing no-treatment path of a

treated unit, Y1t(0), by enabling cross-unit substitution of observed outcomes for potential

outcomes. The same invariance underpins placebo and permutation procedures: randomization

or placebo-in-space tests rely on the distributional equivalence induced by SUTVA to compare

treated units to re-labeled controls without introducing assignment-dependent distortions. Absent

SUTVA, observed donor outcomes would in general be Yjt(0; z−j) and could vary with other

units’ assignments, severing the link Y obs
jt = Yjt(0) that comparative estimators require and

undermining the causal interpretation of cross-unit contrasts.

When policies propagate through geography or networks, outcomes may depend on neighbors’

assignments and, as discussed above, SUTVA is violated. In such cases interference must be

addressed explicitly, whether through exposure mappings that compress the assignment vector

into lower-dimensional summaries of relevant neighbors (Aronow & Samii, 2017; Hudgens &

Halloran, 2008; Manski, 2013), through randomization-based testing strategies (Bowers et al.,

2017; Rosenbaum, 2007), or through epidemiological and statistical approaches that study

identification, estimands, and sensitivity analysis under interference (e.g., Sävje et al., 2021;

Tchetgen Tchetgen & VanderWeele, 2012; T. J. VanderWeele et al., 2014). For synthetic control

(SC), these issues are especially acute: because post-treatment donor outcomes enter directly

into the construction of the counterfactual, even partial exposure of donors introduces bias into

the estimator. Interference is thus not a secondary complication but a direct pathway through

which SC can be distorted—a point we develop formally further below.
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Within this broader landscape, synthetic control (SC) is attractive because it enables transpar-

ent, design-based comparisons in comparative case studies with few units (Abadie, 2021; Abadie

& Gardeazabal, 2003; Abadie et al., 2010, 2015). To see why SUTVA plays a distinctive role in

SC, recall how the estimator is constructed. Let X1 ∈ RK denote the treated unit’s pre-treatment

predictors and X0 ∈ RK×|J | the same predictors for donors J ⊆ {2, . . . , J+1}. SC selects weights

w ∈ ∆ = {w ≥ 0 : 1⊤w = 1} to minimize the pre-period discrepancy ∥X1 −X0w∥2V with V ≻ 0

diagonal, and then applies the same convex weights to donor outcomes in the post-treatment

period. This design pays for minimal trend structure with a crucial reliance on SUTVA: because

the post-period donor outcomes enter the synthetic predictor, they must correspond to units with

no direct treatment and no indirect exposure. If donors are even partially exposed, the synthetic

counterfactual absorbs part of the treated effect and the estimated impact is distorted.1 This

mechanism is the synthetic-control manifestation of the bias channel emphasized in linear-factor

settings when post-period shocks correlate with the weights (Ferman & Pinto, 2021).

The nature of this distortion can be summarized in a compact bias expression. For post-

treatment periods t > T0, the SC estimator based on observed donors admits the decomposition

τ̂t =
[
Y1t(0)− Y SC

1t (0)
]
+ τt − ρ τt

∑
j∈N

wj , (1)

where the three terms correspond respectively to (i) a SUTVA synthetic mismatch between the

treated unit’s no-treatment outcome and its synthetic approximation, (ii) the direct treatment

effect τt, and (iii) a contamination mass equal to the treated effect multiplied by the weight

assigned to exposed donors. This decomposition highlights that even if the synthetic perfectly

reproduces the treated unit’s no-treatment path under SUTVA, τ̂t will still differ from τt whenever

positively weighted donors are exposed. A simplified version makes this transparent:

τ̂t = τt − ρ τt
∑
j∈N

wj . (2)

Equation (1) will be derived formally in the subsection below, but we present it here to build

intuition: SC estimates equal the true effect minus a weighted spillover term, with the magnitude
1The typical case is attenuation: the synthetic estimate is pulled toward the treated outcome when spillovers

raise donor outcomes in the same direction as the treatment effect, yielding an underestimate of the true effect.
However, the bias need not always be attenuating. If spillovers move donor outcomes in the opposite direction of
the treated effect, the synthetic may overshoot, producing an amplified estimate of the effect. This possibility
highlights that interference does not merely add noise but can fundamentally alter the direction and magnitude of
the estimated effect (as we will exhibit with our replications
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of bias governed jointly by the diffusion intensity ρ, the treatment effect τt, and the weight mass

placed on exposed donors.

Equation (1) highlights the mechanism through which spillovers distort synthetic control: any

exposure among positively weighted donors feeds directly into the estimated effect. To appreciate

the severity of this channel, it is useful to situate SC relative to other common designs. All

causal estimators rely on SUTVA to justify using untreated outcomes as counterfactuals, but the

manner in which donor outcomes enter differs sharply across designs, and so too does the impact

of violations.

In difference-in-differences, for example, the control mean aggregates outcomes across many

untreated units, assigning each only modest influence. Contamination of a few controls typically

attenuates the estimate, but the effect is diluted across the pool and becomes material only if

spillovers are widespread. Matching designs are more localized: bias arises when a treated unit is

paired with an exposed control, but the damage is confined to that pair and does not propagate

automatically to others. Regression discontinuity designs present yet another contrast: because

identification exploits outcomes just above and below the cutoff, spillovers would bias the design

only if they differentially affect the two sides of the threshold; broader or symmetric diffusion

often cancels out.

Synthetic control stands apart. The estimator compresses the counterfactual for the treated

unit into a single convex combination of donors, often dominated by a handful of high-weight

contributors chosen precisely for their ability to replicate pre-treatment trajectories. This sparsity

is central to SC’s appeal: by concentrating on a few well-aligned donors, the method achieves

close balance without imposing parametric trend restrictions. Yet the same feature that delivers

this balance under SUTVA makes the design acutely vulnerable under violations. If even one

heavily weighted donor is exposed to spillovers, the contamination is not averaged away, confined

to a pair, or offset symmetrically; it flows directly into the counterfactual in proportion to the

assigned weight. In this setting, interference is not averaged out, localized, or offset symmetrically:

it enters deterministically through the weights.

A single exposed donor can shift the estimated effect in proportion to its assigned weight,

and the donors most capable of reproducing the treated trajectory—the ones the optimization

favors—are frequently those most plausibly exposed. In this sense, SC transforms what might be

a modest attenuation in DiD or a pair-specific distortion in matching into a direct and systematic
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bias channel. The contamination mass term in equation (1) formalizes this: the post-treatment

estimate depends not only on the direct effect but also on the weighted share of the treated

effect leaking into the synthetic. For this reason, SC does not merely inherit SUTVA as a

background condition for identification—it is structurally entangled with it. Donor outcomes

after treatment are the building blocks of the counterfactual, so once they are contaminated, bias

enters mechanically through the weights. This is not a secondary complication but a first-order

vulnerability. Later sections formalize this point: the bias decomposition in equation (1) shows

that the estimated effect consists of the true effect plus a contamination mass proportional to

the total weight placed on exposed donors. Effective corrections must therefore operate directly

on this pathway, reshaping the weight structure that transmits interference into the estimate.

In practice, one response to the risk of spillovers is to restrict the donor pool by trimming

proximate or substantively linked units, or to adapt estimators designed for settings with multiple

treated units (e.g., Cavallo et al., 2013; Firpo & Possebom, 2018; Kreif et al., 2016; Robbins

& Saunders, 2017; Xu, 2017). Let J ∗ denote the full donor set admissible under standard SC

assumptions and J ⊆ J ∗ the subset retained after trimming. Because J is a strict subset,

the optimization problem that defines the synthetic weights is solved over a reduced feasible

region. While trimming may lower the exposed weight mass
∑

j∈N wj and thereby reduce the

contamination term in equation (1), it simultaneously constrains the construction of Y SC
1t (0) to a

smaller space of convex combinations.

The consequence is that pre-treatment imbalance ∥X1 − X0w∥V cannot improve and will

typically worsen, leading to a larger design-driven discrepancy Y1t(0)− Y SC
1t (0). In finite samples

this trade-off manifests concretely: fewer admissible donors reduce the effective dimensionality of

the comparison set, variance of the estimator increases, and the credibility of the counterfactual

trajectory is weakened when the synthetic fails to reproduce the treated unit’s pre-treatment

path. In short, trimming addresses one bias pathway by construction but aggravates another,

and the resulting estimator may be both noisier and harder to interpret. Regularized and

augmented variants of SC (Abadie & L’Hour, 2021; Arkhangelsky et al., 2021; Athey et al.,

2021; Ben-Michael et al., 2021; Doudchenko & Imbens, 2016; Gobillon & Magnac, 2016) partially

stabilize estimation, but because they continue to rely on post-period donor outcomes, they

inherit the same interference sensitivity unless exposure is incorporated directly into the design.

These considerations motivate the approach we take in the remainder of the paper. We
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operationalize interference using an outcome-agnostic, monotone exposure mapping based on

geography (or a known network) and show that SC’s sensitivity to spillovers can be reduced by

acting directly on the object through which contamination flows—the weights. In the next section

we employ a randomization-based diagnostic that tests for proximity-patterned changes in donor

outcomes around the treated unit, and subsequent sections incorporate the exposure mapping

into estimation through covariate rescaling and ridge augmentations that shift mass away from

likely exposed donors while preserving pre-period fit and, when desired, the convex-combination

interpretation that makes SC useful for applied work.

2.2 Formalizing the distortion caused by interference

SUTVA’s locus inside SCM is immediate: for Ŷ (0)
1t to represent Y1t(0), each positively weighted

donor must be observed under no direct treatment and no indirect exposure to the treated unit.

Abadie’s overview emphasizes this point in practice: researchers often curate donor pools to

avoid neighboring or economically linked regions precisely to protect the counterfactual from

spillovers (Abadie, 2021). Beyond such design heuristics, there is now a growing literature that is

working on dealing with spillovers in SCM and factor models, estimating both direct and indirect

effects (e.g., Cao & Dowd, 2019; Di Stefano & Mellace, 2020). Parallel developments in spatial

econometrics likewise model spillovers parametrically (e.g., SLX or spatial-lag specifications)

and have been combined with difference-in-differences to separate direct and indirect effects,

underscoring the importance of interdependence in social sciences applications (Delgado & Florax,

2015; Vega & Elhorst, 2015).

To study the consequences of interference in a transparent way, we adopt a stylized diffusion

approach that isolates the bias channel in SCM. The construction proceeds as: it separates

the problem into three quantities. First, the size of the treated effect τt, which determines the

magnitude of the policy shock. Second, the diffusion intensity ρj ∈ [0, 1], which governs the

fraction of the treated effect transmitted to each donor j. Third, the exposed weight mass∑
j∈N wj , which captures how much of the synthetic counterfactual relies on donors subject to

spillovers. This decomposition clarifies that contamination arises not from a complex interaction

of dynamics but from the mechanical way in which treated effects, diffusion intensity, and donor

weights combine.

Formally, let the treated unit be indexed by i = 1 and donors by j ∈ J . For a post-treatment
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period t > T0, the observed outcome for the treated unit is

Y obs
1t = Y1t(0) + τt,

where Y1t(0) is the no-treatment potential outcome and τt is the direct effect. For donors, we

allow localized, time-homogeneous diffusion with heterogeneous intensities: there is a subset

N ⊆ J such that, for j ∈ N , the observed outcome is

Y obs
jt = Yjt(0) + ρj τt, ρj ∈ [0, 1], (3)

while for j /∈ N , Y obs
jt = Yjt(0) (no spillover). This formulation isolates the spillover channel in a

transparent way: contamination is governed by three elements — the size of the treated effect τt,

the donor-specific diffusion intensities {ρj}, and the weight mass assigned to exposed donors.

Define the SUTVA synthetic counterfactual (the path SCM would target absent interference)

as

Y SC
1t (0) :=

∑
j∈J

wj Yjt(0). (4)

Theorem 1 (Bias of SCM under localized spillovers). For t > T0, the SCM estimator based on

observed donors satisfies

τ̂t =
[
Y1t(0)− Y SC

1t (0)
]︸ ︷︷ ︸

SUTVA synthetic mismatch

+ τt︸︷︷︸
direct effect

− τt
∑
j∈N

ρjwj︸ ︷︷ ︸
contamination mass

. (5)

In particular, if Y SC
1t (0) = Y1t(0) (the SUTVA synthetic counterfactual coincides with the treated

unit’s no-treatment path at t)„ then

τ̂t = τt − τt
∑
j∈N

ρjwj . (6)

Proof. Starting from the definition of the SCM effect:

τ̂t = Y obs
1t −

∑
j∈J

wj Y
obs
jt . (7)

For the treated unit, Y obs
1t = Y1t(0) + τt. For donors, Y obs

jt = Yjt(0) + ρj τt if j ∈ N , and
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Y obs
jt = Yjt(0) otherwise. Substituting, we obtain

τ̂t =
[
Y1t(0) + τt

]
−
[∑
j∈J

wjYjt(0) + τt
∑
j∈N

ρjwj

]
(8)

=
[
Y1t(0)− Y SC

1t (0)
]
+ τt − τt

∑
j∈N

ρjwj , (9)

which establishes (19). The specialization (20) follows by setting Y SC
1t (0) = Y1t(0).

Equation (19) decomposes the estimator into three interpretable components: the SUTVA

synthetic mismatch Y1t(0)−Y SC
1t (0), the direct effect τt, and the contamination mass τt

∑
j∈N ρjwj

generated mechanically by assigning weight to exposed donors. The last term is the explicit bias

pathway introduced by interference; its magnitude depends on the effect size τt, donor-specific

diffusion intensities {ρj}, and the weight mass on exposed donors.

The following corollaries illustrate the basic mechanics of this decomposition under the

simplifying condition Y SC
1t (0) = Y1t(0) (perfect pre-treatment balance under SUTVA). They clarify

how the sign, magnitude, and bounds of the distortion follow directly from the contamination

mass.

Corollary 1 (Sign, attenuation, and scale). Suppose Y SC
1t (0) = Y1t(0) and ρj ∈ [0, 1] for all

j ∈ N . Then:

1. (Sign/attenuation) If
∑

j∈N ρjwj > 0 and τt > 0, then τ̂t < τt; if
∑

j∈N ρjwj > 0 and

τt < 0, then τ̂t > τt. That is, positive weights on exposed donors attenuate estimated effects

toward zero.

2. (Monotonicity in exposure) Holding τt fixed, |τ̂t − τt| is nondecreasing in each ρj and in the

exposed weight mass
∑

j∈N wj. More intense or more widespread spillovers cannot reduce

bias.

3. (Bounds) Because 0 ≤ ρj ≤ 1 and w ∈ ∆, the distortion satisfies 0 ≤ |τ̂t − τt| ≤ |τt|. The

upper bound is attained only if the entire weight is placed on fully exposed donors (ρj = 1

for all j with wj > 0).

Proof. From (20), τ̂t − τt = − τt
∑

j∈N ρjwj . Because each ρj ≥ 0 and wj ≥ 0, the sign of τ̂t − τt

is the opposite of the sign of τt, establishing (i). Statement (ii) follows since the absolute deviation
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is proportional to
∑

j∈N ρjwj , which is monotone in each ρj and in exposed weights. For (iii),

note that 0 ≤
∑

j∈N ρjwj ≤ 1, which yields |τ̂t − τt| ≤ |τt|, with equality only under the stated

condition.

These properties highlight that once exposed donors receive positive weight, bias is inevitable:

the estimator cannot cancel it. Moreover, the distortion grows monotonically in either the

intensity of exposure (ρj) or the mass of weights placed on exposed donors. This makes clear

why interference in SCM is not a secondary nuisance but a direct and systematic channel of bias.
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1: Treated Unit 2: wj > 0 units

Yjt
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Y N
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3: Treatment Effect
(a) No interference

1: Treated unit + 2: wj > 0 units

Yjt

wj

Y N
1tY I

1t

- τ1t + δjt

Contaminated τ1t
(b) Monotone Interference with no reverberation

Treated unit ++ wj > 0 units

Yjt

wj

Y N
1tY I

1t

- τ1t + δnon-mt+reverb
jt

Contaminated τ1t
(c) Non-monotone Interference with reverberation

Figure 1: SUTVA versus interference inside synthetic control. Each row illustrates how
donor contamination enters the synthetic counterfactual through the weights.

(a) No interference: donor outcomes are unaffected, so the synthetic predictor Y SC
1t (0) =∑

j wjYjt(0) is unbiased, and the estimated effect equals the direct effect τt.

(b) Monotone interference without reverberation: the treated effect diffuses smoothly to
nearby donors with intensity ρj . If such donors receive positive weights, the synthetic predictor
embeds their spillovers, and the estimator obeys τ̂t = τt − τt

∑
j∈N ρjwj , so the estimate is

systematically shifted by the contamination mass τt
∑

j∈N ρjwj . This is the structured form of
interference addressed in this paper.

(c) Non-monotone interference with reverberation: spillovers propagate irregularly and
feed back through the network, generating heterogeneous donor exposures that need not decay
with distance. In this setting, the simple decomposition above does not apply without further
assumptions; such cases are beyond the scope of the present analysis.

This decomposition delivers a simple but powerful design principle: bias in SCM under

interference is governed by the exposed weight mass, so the estimator must be engineered to

suppress that mass while preserving pre-treatment fit and, when desired, the convex-combination
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interpretation that makes SCM transparent for applied work. Figure 1 illustrates this principle:

in the absence of interference, donor weights cleanly recover the counterfactual; under localized

spillovers, contamination flows directly into the estimate through exposed donors; and in more

pervasive diffusion settings, further assumptions would be required to disentangle direct from

indirect effects. The remainder of the paper operationalizes this principle by defining a continuous,

outcome-agnostic proximity score and incorporating it into rescaling and ridge adjustments that

systematically redirect weight away from high-risk donors.

3 Detecting Interference

Before constructing a synthetic control, it is useful to diagnose whether donor outcomes were

influenced by the treated unit’s intervention. Such influence constitutes interference and violates

SUTVA, which requires each unit’s potential outcomes to depend only on its own assignment and

not on the assignments of other units (Rubin, 1980). In comparative case studies, interference

could arise when a policy in the treated region diffuses to neighboring regions through geographic,

economic, or network linkages, thereby contaminating donors that should represent untreated

counterfactuals. The canonical Proposition 99 application of synthetic control (Abadie et al.,

2010) already hints at such risks (e.g., cross-border cigarette purchases or policy diffusion), and as

we demonstrated above, if spillovers are present, the synthetic counterfactual absorbs a fraction

of the treated effect, shifting the estimated treatment effect. In order to screen for this problem

ex ante, we develop a diagnostic coupled with randomization inference (Fisher, 1935; Rosenbaum,

2002), which is exact in finite samples and has been adapted to diagnose issues in experimental

designs (Bowers et al., 2017; Rosenbaum, 2007).

To formalize what we aim to detect, we write the joint potential-outcome vector at time t as

Yt(z) =
(
Y1t(z), . . . , YNt(z)

)⊤
, z = (z1t, . . . , zNt)

⊤ ∈ {0, 1}N ,

so that interference is a property of how the assignment vector z co-determines all components of

Yt(z). We can then let S encode the spatial or network structure, and define for each unit i an

exposure mapping Eit = eit(z, S) summarizing the aspects of z (given the structure S) that are

relevant for i’s outcome at t. Importantly, we focus in this paper on a locally dissipating manner

in which exposure will aggregates assignments with a kernel κ over distance, but we impose a
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restriction over κ so that it is nonincreasing:

Eit =
N∑
j=1

κ
(
dij ; θ

)
zjt, κ(r) nonincreasing in r (10)

where dij is the geographic (or network) distance between i and j, and θ collects kernel pa-

rameters. This accommodates heterogeneous patterns of diffusion while encoding the substantive

regularity that proximity increases exposure. We keep outcomes structural in exposure and do

not impose parametric functional form:

Yit(z) = Yit(0) + ∆it

(
Eit

)
, (11)

so that all interference operates through Eit as induced by (z, S) and the kernel κ.

The diagnostic we propose in the next sub-sections will target precisely whether post-versus-pre

changes in donor outcomes align with proximity in a way consistent with (10)-(11). In practice,

we take one of many potential routes and operationalize κ(·) by discretizing distance into a finite

number of rings around the treated unit and comparing outcome changes across near and far

groups of rings. Substantively, these rings discretize equal (or similar) exposure sets implied by

κ: as donors in the same ring are approximated as having comparable exposure scores. We next

formalize this ring partition and the associated test statistic, and then implement a finite-sample

exact randomization test that evaluates whether the treated unit sits at the center of a distinctive

near-far pattern.

3.1 Distance-Based Ring Partition

We operationalize the exposure kernel κ(·) by discretizing distance to the treated center p⋆ into

K rings, approximating κ(dip⋆ ; θ) ≈ sk for all donors i assigned to ring k. Let the set of units

be U = {1, . . . , N}. One unit, denoted p⋆ ∈ U (typically p⋆ = 1), is the actually treated unit

at time T0. For each donor i ̸= p⋆, let dip⋆ denote the distance from i to p⋆. Choose radii

0 = c0 < c1 < · · · < cK that partition the space around p⋆ into K non-overlapping rings, and

assign each donor to a ring via

rip⋆ = k ⇐⇒ ck−1 ≤ dip⋆ < ck, k = 1, . . . ,K.
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In practice, ring boundaries ck can be chosen by contiguity, by application-informed thresholds,

or to yield adequate sample sizes per ring. This construction serves as a discretization of equal-(or

similar-)exposure sets implied by the locally dissipating kernel: nearer rings correspond to larger

exposure scores. (An idealized symmetric geometry with concentric rings over a grid is depicted

in Appendix A.2)

We then define two disjoint donor groups by aggregating rings. Let RA ⊂ {1, . . . ,K}

denote a proximal set (rings suspected to exhibit interference) and RB = {1, . . . ,K} \RA the

complementary distal set. The corresponding donor groups are

Ap⋆ = { i ̸= p⋆ : rip⋆ ∈ RA }, Bp⋆ = { i ̸= p⋆ : rip⋆ ∈ RB }.

By construction, Ap ∪ Bp includes all donors (excluding p itself) and Ap ∩ Bp = ∅. Typically

we begin with RA = {1} (the innermost ring) and RB = {2, . . . ,K}, which is often the most

powerful single contrast for detecting any proximity-structured disturbance.

For the diagnostic to be informative, we emphasize the following design conditions as good-

practice and guidance for applied researchers:

Coverage: Both Ap⋆ and Bp⋆ should be nonempty to permit near–far discrimination, note that

extremely small or empty rings undermine power and interpretability. In applications, set ck

with domain knowledge to avoid vanishing cells while preserving a meaningful distance gradient.

Window-level common shocks: In the chosen pre/post window, there should not be global, unit-

invariant shocks that shift all rings equally (like a nationwide policy). Such shocks cancel in

expectations across rings and naturally erode any contrast. If present, adjust the window or

consider an alternative approach to the research problem.

Stability across windows: Ring membership should be stable across the pre and post segments

used to form Z
(w)
i , so that near–far comparisons are not confounded by reclassification. In

practice, fix ck ex ante and verify that the composition of Ap⋆ and Bp⋆ does not change when

varying windows within reasonable bounds.

Finally, in many applications, policy spillovers plausibly dissipate with distance, so far rings

act as a reasonable control group. But notice that if all donors are near (or all are far), or

interference is genuinely global, power is correspondingly limited.
2Appendix Figure A.1 illustrates the ring geometry (grid with concentric circles centered at p⋆) and the

mapping from continuous distance dip⋆ to discretized exposure scores sk ≈ κ(dip⋆ ; θ).
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3.2 Outcome-Change Statistics

Having defined the groups, we now need a statistic that captures outcome changes potentially

caused by the treatment. Let T index time and T0 denote the intervention time for p⋆. For a

chosen time window w, define disjoint sets T pre
w , T post

w ⊂ T of equal length. For donor i, let

Ȳ
(w)
i,pre =

1

|T pre
w |

∑
t∈Tpre

w

Yit, Ȳ
(w)
i,post =

1

|T post
w |

∑
t∈Tpost

w

Yit,

and define the change statistic

Z
(w)
i = Ȳ

(w)
i,post − Ȳ

(w)
i,pre. (12)

We consider several windows: a full window using all pre- vs. all post-intervention periods; a one-

period window using T0−1 vs. T0+1; and symmetric n-period windows using {T0−n, . . . , T0−1}

vs. {T0+1, . . . , T0+n}. To avoid post-treatment leakage, windows w should be pre-specified using

domain/contextual knowledge, and while alternative windows may be reported for transparency,

ideally the researcher does not perform searches over those to select significance.

Note that Z(w)
i is invariant to additive unit fixed effects over the window (as Yit = αi + uit)

because naturally the pre/post difference cancels αi, focusing the contrast on within-unit shifts

plausibly induced by exposure. Under no interference, donors’ Z(w)
i should not systematically

differ by proximity; with positive spillovers, proximal donors tend to have larger Z(w)
i than distal

donors.

Aggregate by group:

Z̄
(w)
Ap⋆

=
1

|Ap⋆ |
∑
i∈Ap⋆

Z
(w)
i , Z̄

(w)
Bp⋆

=
1

|Bp⋆ |
∑
i∈Bp⋆

Z
(w)
i .

For interpretability and variance scaling, we use a simple two-sample t-statistic3

t
(w)
p⋆ =

Z̄
(w)
Ap⋆

− Z̄
(w)
Bp⋆√

s2P

(
1

|Ap⋆ |
+ 1

|Bp⋆ |

) , s2P =
(|Ap⋆ | − 1) V̂ ar(Z

(w)
i∈Ap⋆

) + (|Bp⋆ | − 1) V̂ ar(Z
(w)
i∈Bp⋆

)

|Ap⋆ |+ |Bp⋆ | − 2
.

A positive value of t(w)p⋆ indicates the near donors increased more on average than far donors

3When ring variances differ materially, researchers should also compute the Welch variant as a robustness
check, but notice that the subsequent permutation inference remains finite-sample exact under the null regardless
of the variance estimator used in the t-ratio’s denominator.
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(consistent with positive spillovers), whereas a negative value indicates the opposite pattern.

If SUTVA holds (no interference), t(w)p⋆ should be close to zero, and a large |t(w)p⋆ | signals a

proximity-structured disturbance consistent with interference.

3.3 Randomization (Permutation) Inference

Classical large-sample approximations are unreliable with small donor pools. We therefore adopt

a design-based randomization test in the spirit of Fisher (1935), treating the identity of the

treated center as exchangeable under the null of no proximity-structured disturbance. Formally,

H0 : Z
(w)
i for i ∈ U exhibits no special near-far pattern around p⋆ relative to any p ∈ U,

implying exchangeability of the center, which substantively means that the the patterns observed

nearby the treated unit are no different from the ones observed far from it. Under H0, the

statistic computed around the actual treated unit should be typical of the distribution of the

same statistic computed when each unit is, counterfactually, taken as the center (that is, treated).

This allows us to construct the sampling distribution of |t(w)p⋆ | under the null by considering other

units as placebo-treated. The algorithm is as follows:

Permutation procedure

1. For each p ∈ U , treat p as if it were the treated center at time T0. Form rings rip, sets

Ap, Bp, and compute t(w)p as in Section 3.2, yielding the set {t(w)p : p ∈ U}.

2. Identify the treated unit p⋆ and its statistic t(w)p⋆ .

3. Compute the exact two-sided p-value

p̂(w) =
1 +#{ p ∈ U : |t(w)p | ≥ |t(w)p⋆ | }

N + 1
.

Including p⋆ among the placebos yields a finite-sample exact permutation p-value under H0

(Fisher, 1935; Rosenbaum, 2002). A small p̂(w) indicates that the treated unit sits at the center

of an atypical near–far disturbance in outcomes, consistent with interference emanating from the

treatment location; a large p̂(w) suggests no detectable proximity pattern. 4

4This mirrors placebo-in-space in SCM (Abadie et al., 2010) insofar as the reference distribution is built by
re-centering the design at each unit. Here the statistic is a proximity contrast rather than an SC effect or loss.
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This randomization test effectively asks, “Is the treated unit the center of a unique outcome

disturbance that is not seen around other units?” If yes, it suggests the treated unit’s intervention

radiated outwards (affecting neighbors) in a way that other units (which had no intervention) did

not. On the other hand, if the treated unit’s t(w)p⋆ is indistinguishable from many placebo t(w)p ’s,

then there is no evidence that proximity to the treated mattered for outcomes. The test assumes

a single focal treated center drives any proximity pattern. Power is driven by coverage across

rings (Section 3.1) and by separation in the group means Z̄(w)
Ap

− Z̄
(w)
Bp

over the chosen window.

3.4 Alternative Ring Contrasts and the Extent of Interference

The primary contrast RA = {1} vs. RB = {2, . . . ,K} asks whether any proximity-structured

interference is present and is typically the most powerful single test for any interference. If

detected, a natural next step, considering a locally dissipating pattern (monotone in distance in

expectation), is to examine how far from the treated center such disturbances remain detectable.

This asks: "how far spillovers extend?", and can be done considering a sequence of pooled or

adjacent contrasts,

Ring 2 vs. Rings 3+, Ring k vs. Ring k + 1, Ring k vs. Rings k + 1, . . . ,K,

recomputing t(w)p and p̂(w) for each contrast. We then locate the smallest index k† such that the

contrast “Ring k† vs. Rings k†+1, . . . ,K” is no longer statistically distinguishable. 5 Suppose a

researcher detects interference in the first ring, and proceeds to the ring 2 vs. rings 3+ contrast,

essentially treating the second ring as the “treated” and comparing it to the farther rings. If this

test is not significant, it suggests that by the second ring the detected interference has mostly

dissipated.

We interpret k† as the point beyond which, in the data, near–far shifts in donor outcomes

are no longer detectable under the locally dissipating model. In practice, adjacent-ring tests

may be underpowered when rings are small, and pooling all rings beyond a boundary (e.g., k vs.

k+1, . . . ,K) improves stability. A schematic illustrating these contrasts appears in Appendix A.7,

and the sequence of contrasts may be viewed as a something similar to the standard impulse

response function in time-series models, but here, this "spatial impulse-response" summarizes
5Because a boundary is identified by inspecting multiple related contrasts, one may report step-down multiplicity

adjustments alongside raw permutation p-values. A simple option is Holm’s step-down procedure (Holm, 1979). In
applications, adjusted p-values can be reported in the main text, with unadjusted values provided for transparency.
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the amplitude of the disturbance near the treated unit and its decay with distance.

The ability to detect a boundary k† (power of the test) improves with (i) larger expected

separation in group means Z̄(w)
Ap

− Z̄
(w)
Bp

as distance increases; (ii) balanced ring sizes (or pooled

contrasts that mitigate small-cell noise); and (iii) longer, symmetric pre/post windows that

increase signal-to-noise while excluding t = T0. Power is reduced by global shocks within the

window that shift all rings similarly and by mis-centered or coarse distance measures that blur

true proximity relations. These considerations complement the coverage and window design

guidance in Sections 3.1–3.2.

3.5 Decision Rule and Link to Bias Correction

The rings diagnostic yields a design-based decision rule for SCM. If the permutation test fails to

reject (p̂(w) large across pre-specified windows), proceed with standard SCM: there is no evidence

that proximity to the treated unit altered donor trajectories. If the test rejects (p̂(w) small for at

least one plausible window), treat SUTVA as violated and proceed under the working conclusion

that donors in proximal rings received nonzero exposure.

In terms of the bias identity introduced earlier, rejection indicates positive exposed weight

mass (
∑

j∈N wj > 0 for donors N that are exposed) so the contamination term is activated and

the SCM estimand absorbs a nontrivial fraction of the treated effect. Subsequent estimators

should therefore target suppression of exposed weight mass while preserving pre-period fit and,

when desired, the convex-combination interpretation. The next sections implement this principle

via a continuous, outcome-agnostic proximity (reach) score (Section 4.1) and ridge-based variants

that downweight donors in proportion to their exposure risk (Section 5).

state Z(full) Z(year-1) Z(sym-3)

Missouri 4.0066 3.9159 3.9381
Iowa 2.3640 2.4193 2.3539
Colorado -0.0414 -0.1069 0.0060
Vermont 0.02501 -0.1115 -0.0886

(a) Test statistics

state tp Ap Bp

MO 4.4207 AR, IL, IN, . . . AL, AZ, CA, . . .
VT -0.2169 CT, DE, ME, . . . AL, AZ, CO, . . .
CO 0.3428 AZ, MT, NV, . . . AL, CA, CT, . . .
IA -0.3312 MI, MN, SD, . . . AL, AZ, CA, . . .

(b) Placebo donor sets

Table 1: Comparison of Z-statistics and placebo donor sets for selected states.

Table 1 summarizes, for a stylized U.S. states panel, unit-level change statistics across three

windows and the corresponding placebo-center contrasts. Missouri is treated at T0 with a direct

effect τ = 4, and first-ring neighbors receive a spillover ρτ with ρ ≈ 0.6, decaying with distance.
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Panel (a) reports Z(full)
i , Z(year-1)

i , and Z(sym-3)
i for selected states, and as expected under locally

dissipating interference, nearby donors to Missouri display large positive changes, whereas distant

donors are near zero. Panel (b) lists, for a few selected placebo centers p, the near-far t-statistic

tp and the membership of Ap (proximal) and Bp (distal) under the primary contrast RA = {1}

vs. RB = {2, . . . }.

Figure 2 visualizes the primary contrast for the treated center and three placebos. In each

panel, the treated center (or placebo center) is marked in red, the proximal set Ap in orange,

and the distal set Bp in green. For Missouri (Panel 2a), the near group exhibits a systematically

higher Z(w)
i than the far group, yielding a large t(w)p⋆ . By contrast, Vermont, Colorado, and Iowa

(Panels 2b–2d) produce t(w)p near zero with balanced near-far patterns, with the permutation

p-value small (p = 0.0408 for the window reported), indicating a distinctive proximity pattern

centered on Missouri. These displays make the decision rule concrete: when a unique near-far

disturbance is centered at the treated unit, proceed with interference-aware SCM that suppresses

exposed weight mass, otherwise, implement standard SCM.

(a) Contrast for Missouri (b) Contrast for Vermont

(c) Contrast for Colorado (d) Contrast for Iowa

Figure 2: Contrasts across selected units.
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4 Rescaling

4.1 Spatial Reach

We model interference through a continuous, proximity-based exposure score. For each donor j,

let d(j, p) denote its distance to the treated unit p. The exposure score is

ηj = f
(
d(j, p)

)
∈ (0, 1),

where f is smooth and increasing in distance. We adopt the convention that larger ηj indicates

lower exposure: very proximate donors have ηj near zero, distant donors have ηj near one. This

score is used as an exposure mapping in the sense of the interference literature, which allows

outcomes to depend on other units’ assignments through low-dimensional summaries of the

assignment vector (Aronow & Samii, 2017; Hudgens & Halloran, 2008; Manski, 2013). The role

of ηj here is purely exogenous: it summarizes the plausibility of spillover based on geography. It

is not a structural outcome model; rather, it is a measured feature of the design that we will feed

into estimation 6.

4.2 Rescaling Adjustment

The design goal is to reduce the contamination channel
∑

j ρjwj by discouraging large weights

on donors with low reach while preserving pre-treatment fit and, when desired, the convex-

combination interpretation. We operationalize this by folding the spatial reach into the synthetic-

control geometry. Let X1 ∈ RK denote the treated unit’s pre-treatment predictors and X0 =

[X.,1, . . . , X.,J ] ∈ RK×J the donor matrix, where standard SCM selects w ∈ ∆J = {w ≥ 0 :

1⊤w = 1} to minimize Q(w;X0) = ∥X1 −X0w∥2V . We incorporate reach via the rescaled donor

matrix X∗
0 = X0 diag(η) and solve the same convex problem with (X1, X

∗
0 ), so that columns

associated with proximate donors are contracted in the metric used to match X1. This changes

only the feasible geometry: the optimizer still chooses a convex combination closest to X1, but

the combinations supported by high-risk donors are down-weighted and mixtures of safer donors

become comparatively more attractive for fit.
6Many smooth, monotone exposure mappings f(d) are admissible (e.g., logistic, Gompertz, kernel decays). For

transparency and outcome-agnostic design, we adopt a simple quantile-anchored specification calibrated from the
empirical distance distribution; full details and defaults are provided in Appendix A.5. Our results rely only on
the exogeneity and monotonicity of reach and are insensitive to smooth reparameterizations that preserve the
rank ordering of donors by proximity.
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In practice, whenever a combination of units farther from the treated unit can replace a donor

potentially more exposed to contamination (closer to the center), rescaling induces weights to

shift from the later to the mixture of safer donors. Theorem 6 below formalizes the consequence:

strictly dominated near donors drop from support, and aggregate mass on a more-exposed set of

near donors does not increase. Since weights remain on the simplex, the convex-combination

interpretation is preserved and standard SCM diagnostics (pre-fit checks and placebo exercises)

remain comparable to the baseline. The link to bias is direct: the contamination term depends

explicitly on exposed weight mass, and rescaling reduces this mass by construction whenever the

donor pool permits coverage by safer combinations.

Implementation is outcome-agnostic and straightforward. Distances and the map η = f(d)

are fixed and calibrated once from d(j, p), and predictors are standardized across donors prior to

applying diag(η) so that the contraction acts on comparable magnitudes. With V ≻ 0 and ηj

bounded away from 0 and 1, the rescaled quadratic loss is strictly curved along feasible directions

on the simplex, so the rescaled problem keeps admitting a unique minimizer w∗ and responds

continuously to small perturbations. While these regularities are not central to the substantive

claim below, they guarantee allow the geometric comparison of supports to be made sharply.

From here, two design conditions link the rescaled geometry to exposed-mass reduction. The

first is a donor-wise coverage relation stating that some mixture of safer donors can stand in for

a given near donor once columns are contracted by reach. The second elevates this donor-level

dominance to a band of “more-exposed” donors, enabling an aggregate conclusion about the total

weight assigned to that band. Both are expressed below:

Assumption 1 (Strict dominance (coverage) by safer donors). For a donor m, there exists a set

S with ηℓ > ηm for all ℓ ∈ S and weights α(m) ∈ ∆|S| such that, writing Z(m) =
∑

ℓ∈S α
(m)
ℓ X.,ℓ

and ηS = minℓ∈S ηℓ,

∥X1 − Z(m)∥V ≤ ∥X1 −X.,m∥V , ∥X1 − ηSZ
(m)∥V < ∥X1 − ηmX.,m∥V .

Assumption 1 expresses the replacement logic: before rescaling, the far-only combination

matches at least as well as m, and after rescaling, even a conservative scaling of that combination

is strictly closer than the scaled near donor. It is a property of the donor pool and the reach

map, not of outcomes post-treatment. Effectively, for a given unit near the treated, there is a
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combination of units farther away that can effectively replace it and, after rescaling, the loss for

this mixture of farther away units is strictly smaller than for the near unit.

Assumption 2 (Band-level dominance occurrence). Let N denote a “more-exposed” band (e.g.,

a reach-threshold set). At least one m ∈ N satisfies Assumption 1 with S(m) ⊆ N c.

Assumption 2 is a mild coverage requirement at the group level. It does not require every

donor in N to be dominated, merely that the band contains at least one dominated unit that can

be replaced by safer donors outside N when reach is taken into account. Therefore, with multiple

near units, Z(m) needs to be able to replace only one of these potentially contaminated units.

Theorem 2 (Support elimination and exposed-mass dominance under rescaling). Let w◦ minimize

∥X1 −X0w∥2V over ∆J , and let w∗ minimize ∥X1 −X∗
0w∥2V over ∆J , with X∗

0 = X0 diag(η). If

donor m satisfies Assumption 1, then w∗
m → 0. If a band N satisfies Assumption 2, then

∑
j∈N

w∗
j ≤

∑
j∈N

w◦
j ,

with strict inequality whenever some dominated m ∈ N has w◦
m > 0.

The logic of the theorem is fairly straightforward. By contracting near columns, rescaling

renders certain near donors strictly inferior to available mixtures of safer donors in the metric used

for fit. If such a dominated donor were to retain its original weight, an infinitesimal reallocation

toward its covering mixture (the combination of donors that could replace it) would strictly

reduce the objective while remaining feasible on the simplex, contradicting optimality. This

delivers donorwise support elimination. If we aggregate the same replacement argument over a

band, we can also conclude that the total mass on the more-exposed set cannot increase after

rescaling and must fall when the unrescaled SCM places positive weight on any dominated

near donor. The proof formalizes these steps using the KKT system and a feasible-direction

construction and is provided in Appendix A.2

This adjustment alters geometry without changing feasibility: weights remain nonnegative and

sum to one, and no post-treatment outcomes enter the construction. The next section develops a

complementary modification that acts directly on weight magnitudes conditional on reach, using

exposure-weighted ridge penalties to further suppress exposed mass while retaining convexity

and the convex-combination interpretation.
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5 Constrained Ridge Adjustment

The target remains the contamination channel identified earlier: post-treatment bias is transmitted

mechanically through the exposed weight mass assigned to plausibly affected donors. Under the

localized model with share ρi ∈ [0, 1], the contamination at time t > T0 is τt
∑

j∈N wjρi. More

generally, with a nonnegative spillover δjt the bias equals Bt =
∑

j wj δjt. The design objective

remains the same: reduce weight on likely exposed donors without sacrificing pre-treatment fit

or the interpretability of SCM as a convex combination of observed donors.

Rescaling (Section 4.1) achieves this by contracting predictor columns for high-risk donors

and is preferable when safer donors can geometrically cover the treated predictors once columns

are shrunk. Constrained ridge acts directly on the weights instead, preserving the original

predictor geometry while imposing an exposure-weighted ℓ2 penalty on large coordinates. In

practice, constrained ridge is the natural choice when (i) the ring diagnostic detects interference

among near donors, but (ii) rescaling materially degrades V -fit because very proximate donors

uniquely anchor certain predictors, or (iii) a smooth, more easily tunable shift of mass away from

high-risk donors is desired while retaining the convex-combination interpretation and standard

SCM diagnostics (Abadie & L’Hour, 2021; Abadie et al., 2010, 2015; Ben-Michael et al., 2021;

Doudchenko & Imbens, 2016).

Let X1 ∈ RK be the treated unit’s pre-treatment predictors, X0 = [X.,1, . . . , X.,J ] ∈ RK×J the

donor matrix, and V = diag(v1, . . . , vK) ≻ 0. Retain the outcome-agnostic reach score ηj ∈ (0, 1)

from Section 4.1 (larger ηj indicates lower exposure) and define a donor-specific penalty term

ψj = g(ηj) that increases as exposure risk rises. The constrained-ridge synthetic control solves

min
w∈RJ

Jλ(w) := ∥X1 −X0w∥2V + λ
J∑
j=1

ψj w
2
j s.t. w ≥ 0, 1⊤w = 1, (13)

where λ ≥ 0 tunes the overall strength of penalization. When λ = 0, (13) reduces to standard

SCM and, as λ increases, large coordinates on higher-risk donors become more costly, inducing

a shift of mass toward safer donors. This design keeps the simplex constraints and preserves

the familiar convex-combination interpretation of weights, while importing the stabilizing and

bias-targeting features of regularization in SCM (Abadie & L’Hour, 2021; Ben-Michael et al.,

2021; Doudchenko & Imbens, 2016).

Three working assumptions (somewhat already implicit) help building the solution:
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Assumption 3 (Exposure-aligned penalties). The term ψj = g(ηj) is strictly decreasing on

(0, 1): if donor m is more exposed than donor ℓ (i.e., ηm < ηℓ), then ψm > ψℓ. For numerical

stability, ψj is bounded away from zero, infj ψj ≥ ψ > 0.

Assumption 3 is the design lever that translates spatial reach into the objective: nearer donors

(lower ηj) face a larger marginal cost per unit of weight, so any reallocation that moves mass

from high- to low-ψ coordinates is weakly preferred by the penalty term. Bounding ψ away from

zero prevents nearly unpenalized coordinates that would defeat regularization.

Assumption 4 (Strict convexity and well-posedness). λ > 0. Then the Hessian Hλ = 2X⊤
0 V X0+

2λ diag(ψ1, . . . , ψJ) is positive definite, so the program (13) with w ≥ 0 and 1⊤w = 1 admits

a unique minimizer w(λ), and the Karush–Kuhn–Tucker (KKT) conditions are necessary and

sufficient (see Boyd & Vandenberghe, 2004).

Assumption 4 plays no substantive role beyond guaranteeing a unique solution characterized

by first-order conditions, and it ensures that any feasible descent direction contradicts optimality.

This will be the device used to compare exposed mass across designs.

Assumption 5 (First-order coverage by safer donors). Let N denote a “more-exposed” band

(e.g., a low-reach threshold set) and S = N c its complement. For each m ∈ N there exists

α(m) ∈ ∆|S| and Z(m) =
∑

ℓ∈S α
(m)
ℓ X.,ℓ such that, at the constrained-ridge solution w(λ) with

residual r(λ) := X0w
(λ) −X1,

r(λ)⊤V
(
Z(m) −X.,m

)
≤ 0, (14)

and for at least one m ∈ N the inequality is strict.

Assumption 5 is the weight-penalized analogue of the coverage used for rescaling: it encodes

that the donor pool contains informative far units capable of absorbing mass without harming

pre-period fit at first order. With these elements in place, we can compare the exposed weight

mass under λ = 0 and under λ > 0.

Theorem 3 (Exposed-mass dominance under constrained ridge). Let w(0) solve minw∈∆J
∥X1 −

X0w∥2V and let w(λ) solve (13) with λ > 0. Under Assumptions 3–4,

∑
m∈N

w(λ)
m ≤

∑
m∈N

w(0)
m . (15)
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If Assumption 5 holds with strict inequality (14) for at least one m ∈ N , then

∑
m∈N

w(λ)
m <

∑
m∈N

w(0)
m . (16)

The proof proceeds by a first-order comparison at the constrained-ridge optimum, where

Assumptions 4- 5 ensures that, as ψm > ψℓ, the ridge term prefers the reallocation of weight

mass from the near unit toward the safer convex mixture of farther donors. Appendix A.3

provides the full guided proof for Theorem 7, implementing the feasible-direction construction

and demonstrating that any result with a larger exposed mass would contradict optimality.

Theorem 7 translates into bias attenuation under the contamination models considered

earlier. Under the localized ρi ∈ [0, 1], the decomposition in Section 2 gives E
[
τ̂
(λ)
t

]
− τt =

− ρ τt
∑

m∈N w
(λ)
m , so

∑
m∈N w

(λ)
m ≤

∑
m∈N w

(0)
m implies |E[τ̂ (λ)t ]− τt| ≤ |E[τ̂ (0)t ]− τt|. Therefore,

for any spillover term δjt aligned with the exposure risk the same mass shift yields

B
(λ)
t :=

∑
j

w
(λ)
j δjt ≤

∑
j

w
(0)
j δjt := B

(0)
t ,

Entailing a reduction in the contamination mass, when compared to the baseline application of

SCM in a scenario where interference is present.

Parameter tuning follows the pre-period-only, selecting λ by cross-validation on pre-treatment

block, in line with practice for synthetic control and its regularized variants (Abadie & L’Hour,

2021; Abadie et al., 2010; Ben-Michael et al., 2021; Doudchenko & Imbens, 2016). Report the

schedule g(·), the tuning grid and selected λ, and pre-period fit diagnostics at λ = 0 and at the

chosen λ. Mechanically, the adjustment preserves the convex-combination interpretation while

inducing a continuous reallocation of mass away from high-ψ coordinates. Because the penalty

multiplier is monotone in exposure, the adjustment acts exactly on the pathway that transmits

bias in the post-period.

The constrained ridge thus provides a convex, on-simplex adjustment that directly targets

exposed mass via an exposure-aligned penalty. The next section considers an unconstrained ridge

variant that relaxes the simplex, allowing negative and non-summing weights to further damp

exposure at the cost of sacrificing the convex-combination interpretation.
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6 Unconstrained Ridge Adjustment

The constrained ridge in Section 5 preserves the simplex so that the synthetic remains a convex

combination of donors while targeting the exposed-weight channel. We now consider an alternative

that relaxes the simplex entirely and estimates weights in RJ by exposure-weighted penalized

least squares. Allowing real (including negative) weights and dropping the sum-to-one restriction

increases flexibility in two ways directly relevant under interference: it enables active cancellation

of contaminated donors through negative coefficients and free scaling of the synthetic control

when the best linear approximation requires a level shift.

This connects to established regularized and augmented SC formulations that move beyond

convex weighting (Abadie & L’Hour, 2021; Ben-Michael et al., 2021; Doudchenko & Imbens,

2016). The particular contribution here is to calibrate regularization by spatial reach (Section 4.1)

so that shrinkage is strongest where spillovers are most plausible. In practice, we switch from

constrained to unconstrained ridge when the ring diagnostic indicates strong local interference

and either (i) suppressing mass on near donors within the simplex materially degrades pre-period

fit, (ii) modest negative weights would counteract residual contamination, or (iii) an overall level

shift improves fit. The major cost is, naturally, the loss of convex-combination interpretability.

Fix the same notation as before: X1 ∈ RK collects the treated unit’s pre-treatment predictors,

X0 = [X.,1, . . . , X.,J ] ∈ RK×J the donor predictors, and V = diag(v1, . . . , vK) ≻ 0 the importance

matrix. Let ηj ∈ (0, 1) be the outcome-agnostic exposure scores (larger ηj indicates lower

exposure), and define the penalty schedule ψj = g(ηj) with g strictly decreasing and bounded away

from {0, 1} (for concreteness, g(η) = 1− η). Write Dψ = diag(ψ1, . . . , ψJ). The unconstrained

ridge estimator solves

wUR(λ) ∈ arg min
w∈RJ

∥X1 −X0w∥2V + λ ∥D1/2
ψ w∥22, λ ≥ 0, (17)

with closed form

wUR(λ) =
(
X⊤

0 V X0 + λDψ

)−1
X⊤

0 V X1 (λ > 0). (18)

For this we are relaxing the simplex constraints used before w ≥ 0, 1⊤w = 1. Therefore, the

pre-period objective is unchanged relative to SCM and constrained ridge, only the feasible set

differs (weights may be negative and need not sum to one). As in standard SCM operation,

post-treatment prediction proceeds by applying the same wUR(λ) to donor outcomes, so the bias
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channel continues to operate through the weights as in Theorem 5.

In terms of assumptions, we retain the same design primitives as in Section 5: an exogenous

reach map and an exposure-aligned penalty schedule ψj = g(ηj) that is strictly decreasing and

bounded away from zero, and λ > 0 for well-posedness (so X⊤
0 V X0 + λDψ ≻ 0 and (18) is

the unique minimizer). No new structural conditions are introduced and, when compared to

constrained ridge, we relax the simplex and nonnegativity constraints. The result below builds

on these primitives and shows how exposure-weighted ridge delivers a tuning-monotone envelope

for the contamination term.

Theorem 4 (Exposure-weighted unconstrained ridge: bias envelope and tuning monotonicity).

Let wUR(λ) solve (17) with λ > 0 under the exposure-aligned schedule in Assumption 3. For any

exposed set N ̸= ∅ with ψ
N

:= minj∈N ψj > 0,

∣∣∣∑
j∈N

wURj (λ)
∣∣∣ ≤

√
|N |ψ−1/2

N

∥∥D1/2
ψ wUR(λ)

∥∥
2
,

and the map λ 7→ ∥D1/2
ψ wUR(λ)∥2 is nonincreasing with limλ→∞ ∥D1/2

ψ wUR(λ)∥2 = 0. Conse-

quently, under the localized, time-homogeneous model of Section 2 (Theorem 5),

∣∣τ̂URt (λ)− τt
∣∣ ≤ ρ |τt|

√
|N |ψ−1/2

N

∥∥D1/2
ψ wUR(λ)

∥∥
2
,

and, more generally, for any nonnegative exposure-aligned profile {δjt} with ψm ≥ ψℓ ⇒ δmt ≥ δℓt,

∑
j

wURj (λ) δjt ≤ ∥δN,t∥2 ψ−1/2
N

∥∥D1/2
ψ wUR(λ)

∥∥
2
.

Hence the right-hand side is nonincreasing in λ and vanishes as λ→ ∞.

The proof can be consulted in Appendix A.4, and it is organized in three subparts: (i)

an exposed-sum bound via Cauchy–Schwarz and the ψ
N

norm equivalence; (ii) ridge-path

monotonicity of ∥D1/2
ψ wUR(λ)∥2 by comparing the objective at two tuning values; and (iii)

translation to bias envelopes under the localized and exposure-aligned spillover models.

The intuition is twofold. First, without the simplex we cannot compare exposed mass, and

then instead we control the exposed sum by an exposure-weighted ℓ2 norm. In other words,

highly exposed donors carry larger ψj and therefore contribute more to the penalized norm, so

shrinking this norm uniformly in λ forces the aggregate exposed contribution to shrink. Second,
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along the ridge path the exposure, so the bound tightens deterministically as tuning increases

and collapses to zero as λ→ ∞. Negative weights are admissible, which enables a more agressive

cancellation of contaminated donors. The envelope applies to the absolute exposed sum, ensuring

that any partial cancellations are captured while still delivering a tuning-monotone control of

the contamination term from Theorem 5.

Mechanically, the estimator replaces the simplex projection with a penalized least-squares

projection in RJ . The exposure-weighted ridge term shrinks coordinates in proportion to

ψj = g(ηj), so high-risk donors are damped more aggressively, while negative coefficients are

admissible and can offset contaminated donors. Dropping 1⊤w = 1 permits level shifts in the

synthetic predictor when the best linear approximation is not anchored at the convex hull of

donors. The price of this flexibility is, as mentioned, loss of the convex-combination interpretation

(Ben-Michael et al., 2021; Doudchenko & Imbens, 2016; Hastie et al., 2009; Hoerl & Kennard,

1970).

In summary, the unconstrained ridge retains the design-based discipline (pre-period tuning;

outcome-agnostic reach) while relaxing the simplex to permit negative weights and level shifts.

The exposure-weighted penalty yields a tuning-monotone envelope for the contamination term

(Theorem 8), providing direct control of the bias pathway identified earlier. We next turn to

simulations and applications to quantify the empirical trade-offs between rescaling, constrained

ridge, and unconstrained ridge in settings with and without interference.

7 Simulation Evidence

We assess the behavior of the proposed corrections in a spatial simulation calibrated to the

contiguous United States. The population consists of the contiguous 48 states with Missouri

as the treated unit, and treatment begins at time T0 in a panel of length T = 30. Exposed

neighbors are defined geographically: first–order contiguity determines the set of units at positive

interference risk, and the contamination radius is taken to be the maximum inter–centroid

distance among these first–order neighbors, and units within this radius form the exposure set.

In the pre–treatment period each unit follows a stable additive data–generating process with

a unit effect, independent standard–normal covariates, and idiosyncratic noise; we also include

one lag of the outcome in the predictor set used by SCM. After T0, the treated unit receives a
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constant direct effect τ , while exposed neighbors receive a homogeneous spillover ρτ ; all other

units evolve as before. Hence τ indexes the magnitude of the causal effect and ρ ∈ [0, 1] the

share that diffuses to neighbors.

We compare four estimators: (i) conventional SCM (no correction), (ii) covariate rescaling

based on the spatial reach score introduced in Section 4.1, (iii) constrained ridge (nonnegativity

and sum–to–one retained) from Section 5, and (iv) an unconstrained ridge variant that removes

the simplex restrictions while keeping the same exposure–weighted penalty.

For all methods, predictors are standardized across donors and exposure scores are calibrated

exactly as in Section 4.1 with the same logistic map and tail anchoring; the penalty schedule

uses g(η) = 1− η, bounded away from 0 and 1 for numerical stability. Tuning parameters for

ridge methods are chosen exclusively from pre–treatment data via rolling–fold cross–validation:

for each candidate λ, weights are estimated on a training slice of the pre–period and validated

on the remaining pre–period, and the λ minimizing validation error is selected. This avoids

outcome–dependent tuning and follows best practice for SCM and its regularized variants (e.g.,

Abadie & L’Hour, 2021; Abadie et al., 2010; Ben-Michael et al., 2021; Doudchenko & Imbens,

2016).

To summarize performance we report, for each method, the distribution of the post–treatment

average treatment effect estimate ÂTT across simulations and its continuous ranked probability

score (CRPS) relative to the degenerate distribution at the true τ (Gneiting & Raftery, 2007).

Smaller CRPS indicates that the empirical distribution of ÂTT concentrates more tightly around

the truth. We R = 1,000 replications for each parameter pair on the grid τ ∈ {1, 4, 7} and

ρ ∈ {0.1, 0.3, 0.6, 0.9, 1}; the figure below displays the representative case (τ, ρ) = (4, 0.6), but

the results are consistent across all specifications.

The pattern mirrors the bias channel in Theorem 5. Uncorrected SCM assigns nontrivial mass

to exposed neighbors, so its ÂTT distribution is shifted downward when τ > 0 (attenuation)

and exhibits a relatively large CRPS. Constrained ridge preserves the simplex and shrinks

high–risk donors but, because it must reallocate mass within the simplex, the exposed share is

only partially reduced; the distribution moves slightly toward the truth and CRPS improves

marginally. Covariate rescaling alters the geometry of the fit so that near donors are harder

to use; weight reallocates into less–exposed donors, leading to an ÂTT concentrated around τ

and a sharp CRPS improvement. The unconstrained ridge, by permitting negative weights and
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Figure 3: Distribution functions of ÂTT at τ = 4, ρ = 0.6. The vertical step line marks the true effect. Gray:
uncorrected SCM (ATT = 3.54, CRPS = 0.23); red: constrained ridge (ATT = 3.55, CRPS = 0.25); green: rescaled SCM
(ATT = 3.95, CRPS = 0.06); orange: unconstrained ridge (ATT = 4.01, CRPS = 0.03).

dropping the sum–to–one restriction while penalizing exposure, can actively offset contaminated

donors and freely scale the synthetic predictor; in this design it exhibits the tightest concentration

around τ and the smallest CRPS.

Across the full grid of (τ, ρ), these relative orderings persist: both reach–based corrections

substantially reduce bias relative to uncorrected SCM, and the unconstrained variant typically

delivers the strongest attenuation of contamination (at a cost in interpretability that we discuss

in the next section).

8 Replications

We now apply the framework—diagnostics and corrections—to four influential applications in

which synthetic control is the primary design. For each case we first probe for interference using

the ring-based randomization test from Section 3; distances are great-circle distances between

unit centroids and we examine several ring definitions and all pre/post windows. We then discuss

coverage, i.e., whether the donor pool spans near, mid, and far units relative to the treated

unit, which is critical for diagnosing SUTVA and for learning whether spillovers are plausibly

localized. Finally, in a setting where richer coverage is attainable, we re-estimate the design with

an expanded donor pool and implement the bias-correction tools developed above.

The four studies are: Abadie and Gardeazabal (2003) on the economic impact of the Basque

Country conflict (Spanish provinces as donors), Ben-Michael et al. (2021) on the Kansas 2012 tax

cuts (U.S. states), Abadie et al. (2015) on the economic consequences of German reunification
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(OECD countries), and Kikuta (2020) on civil war and deforestation in the Democratic Republic

of the Congo (cross-national donors). Following each study’s original construction (predictors,

pre/post split, and weighting metric V ), we run our proximity diagnostic. In these original data

sets, we do not detect interference at conventional levels. As observed in the image below, the

permutation p-values are 0.22 (Basque), 0.18 (Kansas), 0.46 (German reunification), and 0.33

(DRC).

(a) Abadie et al (2003) Conflict in the Basque
p = 0.22

(b) Ben-Michael et al (2021) Kansas tax cut
p = 0.18

(c) Abadie et al (2015) German Reunification
p = 0.46

(d) Kikuta (2020); Civil war and deforestation
p = 0.33

Figure 4: Prominent synthetic control applications.

The absence of detected interference in the original designs should not be interpreted as

evidence that SUTVA necessarily holds; rather, it highlights a potential design limitation.

Detecting a proximity pattern requires coverage: a donor pool with meaningful variation in

distance—near, mid, and far units—so that the diagnostic can compare rings. When the donor

pool is geographically scattered or concentrated in a single band, the design cannot reveal whether

neighbors behave differently from far-away units, and any inference must effectively assume away

spillovers. In our four cases, the Basque and Kansas designs pool donors from the same national

space and exhibit good coverage; by contrast, the German reunification and DRC designs use thin,
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hand-curated international donor sets with limited spatial structure, which constrains diagnostic

learning about SUTVA.

Application Coverage Interference

Abadie et al (2003) ✓ ✗

Ben-Michael et al (2021) ✓ ✗

Abadie et al (2015) ✗ ✗

Kikuta (2019) ✗ ✗

Expanded German Reunification ✓ ✓

Table 2: Coverage and interference in selected synthetic control applications.

To demonstrate how coverage changes what we can learn, we revisit Abadie et al. (2015)

and expand the donor pool to all countries with complete data on the authors’ predictors and

outcome (roughly 150 countries), maintaining their pre/post periodization and predictor set.

With this richer and geographically diverse pool, the ring diagnostic now flags a clear proximity

pattern around West Germany; the permutation p-value drops from 0.46 in the original OECD

sample to 0.016 in the expanded sample, indicating statistically detectable spillovers.

(a) Abadie et al (2015) German Reunification,
p = 0.46

(b) Expanded German Reunification,
p = 0.016

Figure 5: German reunification: original versus expanded donor pools. Expanded coverage
reveals a proximity pattern consistent with interference.

Motivated by the diagnostic, we apply the three corrections to the expanded German case:

covariate rescaling (Section 4.1), constrained ridge (Section 5), and unconstrained ridge (Section 6).

All tuning is performed on the pre-treatment period only (rolling folds), the exposure map uses

distances between centroids with the same calibration as in Section 4.1, and we follow Abadie

et al. (2015) for outcomes, predictors, and V . Table 3 reports the average treatment effect on

the treated (ATT) and pre-treatment RMSE.
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Table 3: German reunification (expanded donor pool): estimates and pre-treatment fit

Specification ATT Pre-RMSE

Baseline SC (authors’ design) −1549.9 119.08
Rescaled SC (covariate reach) −1601.5 279.03
Constrained ridge (simplex) −1103.4 80.43
Unconstrained ridge 136.1 59.5

Three patterns are worth underscoring. First, the expanded design with demonstrable coverage

changes the question we can answer: once near, mid, and far donors are all represented, the

diagnostic can credibly adjudicate SUTVA, and here it points to spillovers (p = 0.016). Second,

the corrections materially affect inference in directions consistent with their geometry. Covariate

rescaling preserves the simplex and moves the feasible synthetic profiles away from proximate

donors, magnifying the negative effect relative to baseline but worsening pre-fit as the geometry

tightens. Constrained ridge keeps convex weights but penalizes exposed donors, attenuating the

magnitude while improving pre-fit. Unconstrained ridge relaxes the simplex and allows active

cancellation (negative or non-summing weights), delivering the closest pre-treatment fit and, in

this case, a sign reversal. Third, the trade-off highlighted in Sections 4.1–5 is visible empirically:

the most flexible reweighting yields the largest bias reduction when interference is present but

sacrifices the simple convex-combination interpretation emphasized in the classic SC paradigm

(Abadie & L’Hour, 2021; Ben-Michael et al., 2021; Doudchenko & Imbens, 2016).

Taken together, these replications show how the proposed workflow operates end to end.

Coverage is a prerequisite for learning about interference; with adequate coverage, the ring

diagnostic can flag spillovers; and when interference is detected, proximity-aware corrections that

act directly on the weights can substantially change the substantive conclusions, often improving

pre-treatment fit and reducing the contamination channel identified in Theorem 5. In settings

where donor pools are discretionary or thin, expanding coverage is itself a design improvement

that enables credible diagnostics and targeted bias correction.

9 Conclusion

SUTVA is indispensable for causal inference designs, and it is particularly consequential for

Synthetic Control methods because post-treatment donor outcomes enter the counterfactual

directly. We formalized this channel via a bias decomposition in which contamination operates
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through the exposed weight share: the estimator differs from the target by a term proportional to∑
j ρjwj . This channel is mechanical: once positively weighted donors are exposed, bias follows,

and it motivates both diagnosis and design modifications that act on the SCM weights.

We proposed a design-based diagnostic that tests for proximity-patterned outcome changes

around the treated unit using ring partitions and Fisherian randomization inference. The test

is exact in finite samples under the sharp null and offers a pre-analysis decision rule: proceed

with standard SC when proximity patterns are not detected; otherwise, treat SUTVA as violated

and modify the design. The diagnostic requires coverage across distance rings, as without

near–mid–far donors, power is limited and SUTVA violations cannot be properly assessed.

We then introduced three interference-aware adjustments that incorporate an exogenous

exposure map into SC while tuning only on pre-period data. Covariate rescaling contracts

high-risk donor columns, leaving weights on the simplex under a mild coverage condition, the

exposed mass cannot increase. Constrained ridge preserves the convex-combination interpretation

but adds an exposure-aligned ℓ2 penalty; KKT geometry implies bandwise dominance, so total

weight on exposed donors weakly (and often strictly) falls. Unconstrained ridge relaxes the

simplex, allows negative weights and level shifts, and penalizes via an exposure-weighted norm;

a simple Cauchy–Schwarz argument and ridge-path monotonicity deliver a tuning-monotone

envelope for the contamination term.

Simulations calibrated to U.S. geography corroborate these mechanisms. Baseline SC exhibits

attenuation when spillovers are present, constrained ridge modestly improves performance,

covariate rescaling materially reduces bias, and unconstrained ridge typically achieves the tightest

concentration around the true effect (smallest CRPS) by enabling active cancellation while

controlling a penalized norm. These patterns persist across effect sizes and diffusion intensities.

Replications illustrate the workflow. Applied to Abadie and Gardeazabal (2003), Ben-Michael

et al. (2021), Abadie et al. (2015), and Kikuta (2020), the ring diagnostic does not reject at

conventional levels, consistent with either SUTVA or insufficient coverage. Expanding the Abadie

et al. (2015) design to a broad, data-complete donor pool yields clear coverage and a detected

proximity pattern. The corrections then materially change the estimate in directions consistent

with their geometry, with unconstrained ridge delivering the closest pre-period fit and the largest

attenuation of the contamination channel.

Practically, we recommend: (i) ensure coverage; (ii) run the ring diagnostic; (iii) if interference
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is detected, start with rescaling; (iv) use constrained ridge when simplex interpretability is

important but some mass reallocation is feasible; (v) deploy unconstrained ridge when residual

exposure persists and modest negative weights can cancel contamination without harming pre-fit.

Two qualifications delimit scope. Diagnostic power depends on coverage, and design guarantees

rely on an exogenous exposure map aligned with actual spillovers. These considerations suggest

extensions: constructing reach with auxiliary mobility or trade data under monotonicity con-

straints and sensitivity to alignment. Overall, the contribution is to recast interference handling

in SC as a geometric design problem with explicit diagnostics and interference-aware estimators,

preserving the transparency of SC while mitigating its first-order vulnerability to spillovers.
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A.1 Theorem 1 Proof

Theorem 5 (Bias of SCM under localized spillovers). For t > T0, the SCM estimator based on

observed donors satisfies

τ̂t =
[
Y1t(0)− Y SC

1t (0)
]︸ ︷︷ ︸

SUTVA synthetic mismatch

+ τt︸︷︷︸
direct effect

− τt
∑
j∈N

ρjwj︸ ︷︷ ︸
contamination mass

. (19)

In particular, if Y SC
1t (0) = Y1t(0), then

τ̂t = τt − τt
∑
j∈N

ρjwj . (20)

Local setup for Thm. 5).

(A1) Time index: fix a post-treatment period t > T0.

(A2) Weights: w = (wj)j∈J with wj ≥ 0 and
∑

j∈J wj = 1.

(A3) Interference set: N ⊆ J (donors exposed to spillovers in post-periods). For j /∈ N ,

Y obs
jt = Yjt(0).

(A4) Diffusion intensities: (ρj)j∈N with ρj ∈ [0, 1], time-homogeneous; for j ∈ N , Y obs
jt =

Yjt(0) + ρj τt.

(A5) Treated unit: Y obs
1t = Y1t(0) + τt.

(A6) SUTVA synthetic target (no-interference counterfactual): Y SC
1t (0) :=

∑
j∈J wj Yjt(0).
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Proof.

Estimator definition:

τ̂t = Y obs
1t −

∑
j∈J

wj Y
obs
jt

[definition of SCM post-period effect].

Substitute the treated unit’s observed outcome

τ̂t =
(
Y1t(0) + τt

)
−

∑
j∈J

wj Y
obs
jt

[by (A5)].

Partition donors into exposed and unexposed

τ̂t =
(
Y1t(0) + τt

)
−

∑
j∈N

wj Y
obs
jt −

∑
j∈J\N

wj Y
obs
jt

[split sum over J = N ∪ (J \N)].

Substitute donors’ observed outcomes by exposure status

τ̂t =
(
Y1t(0) + τt

)
−

∑
j∈N

wj
(
Yjt(0) + ρj τt

)
−

∑
j∈J\N

wj Yjt(0)

[by (A3)–(A4)].

Distribute weights and separate terms

τ̂t =
(
Y1t(0) + τt

)
−

∑
j∈N

wj Yjt(0) − τt
∑
j∈N

ρj wj −
∑

j∈J\N

wj Yjt(0)

[linearity of sum].

Re-aggregate baseline donor outcomes

τ̂t =
(
Y1t(0) + τt

)
−

∑
j∈J

wj Yjt(0) − τt
∑
j∈N

ρj wj

[combine the two baseline sums].

Introduce Y SC
1t (0) and rearrange

t =
(
Y1t(0)− Y SC

1t (0)
)
+ τt − τt

∑
j∈N ρj wj

[by (A6)].
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Conclude the decomposition

τ̂t =
(
Y1t(0)− Y SC

1t (0)
)︸ ︷︷ ︸

SUTVA synthetic mismatch

+ τt︸︷︷︸
direct effect

− τt
∑
j∈N

ρjwj︸ ︷︷ ︸
contamination mass

[this is (19)].

Special case Y SC
1t (0) = Y1t(0)

t = τt − τt
∑

j∈N ρjwj

[set mismatch term to zero; obtain (20)].
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Corollary 2 (Sign, attenuation, and scale). Suppose Y SC
1t (0) = Y1t(0) and ρj ∈ [0, 1] for all

j ∈ N . Then:

1. (Sign/attenuation) If
∑

j∈N ρjwj > 0 and τt > 0, then τ̂t < τt; if
∑

j∈N ρjwj > 0 and
τt < 0, then τ̂t > τt.

2. (Monotonicity in exposure) Holding τt fixed, |τ̂t − τt| is nondecreasing in each ρj and in∑
j∈N wj.

3. (Bounds) 0 ≤ |τ̂t − τt| ≤ |τt|, with the upper bound only if all positive weight is on fully
exposed donors.

Proof.

Start from the special case

τ̂t − τt = − τt
∑
j∈N

ρjwj

[by (20)].
Sign

sign(τ̂t − τt) = − sign(τt) whenever
∑
j∈N

ρjwj > 0

[since ρj , wj ≥ 0].
Hence, if τt > 0 then τ̂t < τt; if τt < 0 then τ̂t > τt (part (i)).

Monotonicity

|τ̂t − τt| = |τt| ·
∑
j∈N

ρjwj

[from Step 1 and nonnegativity].
∂

∂ρj
|τ̂t − τt| = |τt|wj ≥ 0

[componentwise monotonicity in each ρj ].

If total exposed mass increases (holding ρ fixed),
∑
j∈N

wj increases, so |τ̂t−τt| increases (part (ii)).

Bounds

0 ≤
∑
j∈N

ρjwj ≤
∑
j∈N

1 · wj ≤
∑
j∈J

wj = 1

[since ρj ∈ [0, 1] and w ∈ ∆].

0 ≤ |τ̂t − τt| = |τt| ·
∑
j∈N

ρjwj ≤ |τt|

[multiply by |τt|].

Equality at the upper bound requires
∑
j∈N

ρjwj = 1,

i.e., all positive weight lies on donors with ρj = 1 (part (iii)).
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A.2 Theorem 2 Proof

Theorem 6 (Support elimination and exposed-mass dominance under rescaling). Let w◦ minimize
∥X1 −X0w∥2V over ∆J , and let w∗ minimize ∥X1 −X∗

0w∥2V over ∆J , with X∗
0 = X0 diag(η). If

donor m satisfies Assumption 1, then w∗
m → 0. If a band N satisfies Assumption 2, then∑

j∈N
w∗
j ≤

∑
j∈N

w◦
j ,

with strict inequality whenever some dominated m ∈ N has w◦
m > 0.

Local setup for Thm. 6.

Fix V = diag(v1, . . . , vK) ≻ 0.

Let X1 ∈ RK , X0 = [X.,1, . . . , X.,J ] ∈ RK×J , and ∆J = {w ∈ RJ≥0 : 1
⊤w = 1}.

Let η = (η1, . . . , ηJ)
⊤ with ηj ∈ (0, 1), and define X∗

0 := X0 diag(η).

Define Q(w;X0) := ∥X1 −X0w∥2V = (X1 −X0w)
⊤V (X1 −X0w).

Let w◦ ∈ argminw∈∆J
Q(w;X0) and w∗ ∈ argminw∈∆J

Q(w;X∗
0 ).

Assume strict convexity along feasible directions: d⊤X∗⊤
0 V X∗

0d > 0 for all d ̸= 0 with 1⊤d = 0.

Assumptions 1 and 2 are as given in the main text.

Summary of what each component does

• Part A makes explicit where the quadratic form w⊤H∗w − 2b∗⊤w +X⊤
1 V X1 comes from

and why H∗ is the Hessian.

• Part B states KKT and the exact role we use: identifying feasible descent directions
contradicts optimality.

• Part C proves donor-level support elimination via a concrete feasible direction built from
Assumption 1.

• Part D lifts this to band-level mass via an explicit finite sequence of mass-reducing descent
steps and optimality.
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Proof.

A. Quadratic expansion and curvature

Q(w;X∗
0 ) = (X1 −X∗

0w)
⊤V (X1 −X∗

0w)

[definition of Q with X∗
0 ].

Q(w;X∗
0 ) = X⊤

1 V X1 − 2(X∗⊤
0 V X1)

⊤w + w⊤X∗⊤
0 V X∗

0w

[expand the quadratic form].

Q(w;X∗
0 ) = X⊤

1 V X1 − 2b∗⊤w + w⊤H∗w

[define b∗ := X∗⊤
0 V X1, H∗ := X∗⊤

0 V X∗
0 ].

∇wQ(w;X∗
0 ) = − 2b∗ + 2H∗w

[differentiate the quadratic in w].

∇2
wQ(w;X∗

0 ) = 2H∗

[constant Hessian].

d⊤∇2
wQ(w;X∗

0 )d = 2 d⊤H∗d = 2 d⊤X∗⊤
0 V X∗

0d > 0 ∀d ̸= 0, 1⊤d = 0

[strict convexity on the tangent space].

d⊤∇2
wQ(w;X∗

0 )d = 2 d⊤H∗d = 2 d⊤X∗⊤
0 V X∗

0d > 0 ∀d ̸= 0, 1⊤d = 0

[strict convexity on the tangent space].

Therefore the constrained problem on ∆J has a unique minimizer w∗

[standard result: strict convexity + convex feasible set].
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B. Lagrangian and KKT

L(w, λ, µ) = Q(w;X∗
0 ) − λ(1⊤w − 1) − µ⊤w

[introduce Lagrangian: one equality, J nonnegativity constraints].

∇wL(w, λ, µ) = 2H∗w − 2b∗ − λ1 − µ

[gradient in w via Part A].

KKT at (w∗, λ∗, µ∗):



2H∗w∗ − 2b∗ − λ∗1− µ∗ = 0, [stationarity]

1⊤w∗ = 1, w∗ ≥ 0, [primal feasibility]

µ∗ ≥ 0, [dual feasibility]

µ∗jw
∗
j = 0 ∀j. [complementary slackness]

Role of KKT we will use:


(i) If w∗

j > 0, then (2H∗w∗ − 2b∗)j = λ∗.

(ii) If w∗
j = 0, then (2H∗w∗ − 2b∗)j ≥ λ∗.

[from µ∗j = 0 when w∗
j > 0; µ∗j ≥ 0 otherwise].

C. Donor-level support elimination under strict dominance.

Fix a donor m that satisfies Assumption 1.

Z(m) :=
∑
ℓ∈S

α
(m)
ℓ X.,ℓ, ηS := min

ℓ∈S
ηℓ

[notation from Assumption 1].

∥X1 − Z(m)∥V ≤ ∥X1 −X.,m∥V

[Assumption 1, first inequality (unrescaled match no worse).]

∥X1 − ηSZ
(m)∥V < ∥X1 − ηmX.,m∥V

[Assumption 1, second (strictly better after rescaling).]
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Lemma C.1 (directional improvement from m to S).

Define d ∈ RJ by dm := −1, dℓ := α
(m)
ℓ (ℓ ∈ S), dj := 0 otherwise.

1⊤d = −1 +
∑
ℓ∈S

α
(m)
ℓ = 0

[feasible (tangent) direction; α(m) ∈ ∆|S|].

X∗
0d =

∑
ℓ∈S

α
(m)
ℓ ηℓX.,ℓ − ηmX.,m

[apply X∗
0 = X0 diag(η) to d].

For any z ∈ RK ,
d

dϵ

∣∣∣
ϵ=0

∥X1 − (z + ϵu)∥2V = −2 (X1 − z)⊤V u

[directional derivative of a quadratic].

Set z := X∗
0w

∗, u := X∗
0d. Then ∇wQ(w∗;X∗

0 )
⊤d = 2 (X∗

0w
∗ −X1)

⊤V (X∗
0d)

[chain rule].

Write X∗
0d = (ηSZ

(m) − ηmX.,m)︸ ︷︷ ︸
uS

+
∑
ℓ∈S

α
(m)
ℓ (ηℓ − ηS)X.,ℓ︸ ︷︷ ︸

rS

[add and subtract ηSZ(m)].

∥X1 − ηSZ
(m)∥V < ∥X1 − ηmX.,m∥V =⇒ (X1 − ηmX.,m)

⊤V uS > 0

[strict descent toward ηSZ(m) in V -metric].

(X1 −X∗
0w

∗)⊤V uS = (X1 − ηmX.,m)
⊤V uS + (ηmX.,m −X∗

0w
∗)⊤V uS

[add and subtract ηmX.,m].

If w∗
m > 0, the stationarity/KKT alignment implies (ηmX.,m −X∗

0w
∗)⊤V uS ≥ 0

[coordinates with w∗
j > 0 share equal gradient; uS redistributes mass away from m].

Hence (X1 −X∗
0w

∗)⊤V uS > 0

[strictly positive inner product].

(X1 −X∗
0w

∗)⊤V rS ≥ 0

[each term uses (ηℓ − ηS) ≥ 0 and convexity alignment; see note below].

⇒ (X1 −X∗
0w

∗)⊤V (X∗
0d) > 0

[sum of two nonnegative terms with the first strictly positive].

⇒ ∇wQ(w∗;X∗
0 )

⊤d = 2(X∗
0w

∗ −X1)
⊤V (X∗

0d) < 0

[sign flip].

Therefore, if w∗
m > 0, there exists a feasible descent direction d (contradiction) ■
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Note on (X1 −X∗
0w

∗)⊤V rS ≥ 0:

Each summand moves mass from m to safer ℓ ∈ S with ηℓ ≥ ηS , and by KKT, coordinates with

smaller scaled columns cannot have strictly smaller gradient than active ones. This ensures no

negative contribution from rS .

Conclusion of donor-level down-weighting/elimination:

If m satisfies Assumption 1, then w∗
m → 0 [by Lemma C.1 and the KKT no-descent condition at

w∗].

D. Band-level exposed-mass dominance (aggregate inequality).

Assume N satisfies Assumption 2: there exists m ∈ N strictly dominated by S(m) ⊆ N c.

Lemma D.1 (mass-reducing descent from any w with wm > 0).

Fix any feasible w ∈ ∆J with wm > 0 and define d as in Lemma C.1 (move mass from m to S(m)).

1⊤d = 0, d⊤N1 = −1 and d⊤Nc1 = +1

[direction preserves the sum but transfers 1 unit from N to N c at first order].

∃ ϵ0 > 0 : ∀ ϵ ∈ (0, ϵ0], w + ϵd ∈ ∆J

[feasibility for small steps; nonnegativity preserved since wm > 0, dℓ ≥ 0 for ℓ ∈ S].

d

dϵ

∣∣∣
ϵ=0

Q(w + ϵd;X∗
0 ) = ∇wQ(w;X∗

0 )
⊤d < 0

[same strict coverage argument as in Lemma C.1, independent of w∗].

⇒ ∃ ϵ1 ∈ (0, ϵ0] : Q(w + ϵd;X∗
0 ) < Q(w;X∗

0 ) and
∑
j∈N

(wj + ϵdj) <
∑
j∈N

wj .

Constructive reduction starting from w◦.

1. If no dominated donor in N has w◦
j > 0, then

∑
j∈N w

∗
j ≤

∑
j∈N w

◦
j holds trivially by Part

C (no new dominated support can appear)

2. Otherwise, pick any dominated m ∈ N with w◦
m > 0.

3. Apply Lemma D.1 to w(0) := w◦ to obtain w(1) := w(0) + ϵ1d
(m) with Q(w(1);X∗

0 ) <

Q(w(0);X∗
0 ), and

∑
j∈N w

(1)
j <

∑
j∈N w

(0)
j [strict decrease in both rescaled loss and band

mass].
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4. Repeat the argument finitely many times (each time choosing a dominated donor in N

with positive weight), obtaining a sequence {w(r)}Rr=0 ⊂ ∆J such that Q(w(r+1);X∗
0 ) <

Q(w(r);X∗
0 ) and

∑
j∈N w

(r+1)
j <

∑
j∈N w

(r)
j .

5. Stop once all dominated donors in N have reduced or zero weight (this occurs in finitely

many steps since at each step some wm ↓ 0).

6. Denote the terminal point by w̄ := w(R) Q(w̄;X∗
0 ) < Q(w◦;X∗

0 ) and
∑

j∈N w̄j <∑
j∈N w

◦
j [telescopes across the finite sequence]

E. Conclusion - From w̄ to w∗ (no band-mass rebound at the optimum).

By Part C, any minimizer w∗ of Q(·;X∗
0 ) has w∗

m = 0 for every dominated m ∈ N .

Consider any feasible direction δ that increases band mass at a point with no dominated mass

(like w̄): 1⊤δ = 0, δ⊤N1 > 0.

Such a direction must move weight into N from N c but, by the absence of dominance, no

strict coverage inequality is available to generate descent; KKT at the minimizer then implies

∇wQ(w∗;X∗
0 )

⊤δ ≥ 0.

Therefore any move that increases band mass from w̄ cannot reduce the objective below Q(w̄;X∗
0 ).

Since w∗ minimizes Q(·;X∗
0 ) and Q(w∗;X∗

0 ) ≤ Q(w̄;X∗
0 ), the optimizer cannot place more mass

on N than w̄ does:
∑

j∈N w
∗
j ≤

∑
j∈N w̄j <

∑
j∈N w

◦
j chain the two inequalities; strict if some

dominated m ∈ N had w◦
m > 0

If no dominated donor in N had positive w◦
m, then Part C yields

∑
j∈N w

∗
j ≤

∑
j∈N w

◦
j (weak

inequality).
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A.3 Theorem 3 Proof

Theorem 7 (Exposed-mass dominance under constrained ridge). Let w(0) solve minw∈∆J
∥X1 −

X0w∥2V and let w(λ) solve (13) with λ > 0. Under Assumptions 3–4, equation
∑

m∈N w
(λ)
m ≤∑

m∈N w
(0)
m .equation If Assumption 5 holds with strict inequality (14) for at least one m ∈ N ,

then equation
∑

m∈N w
(λ)
m <

∑
m∈N w

(0)
m .equation

Local setup for Thm. 3

Fix X1 ∈ RK , X0 = [X.,1, . . . , X.,J ] ∈ RK×J , V = diag(v1, . . . , vK) ≻ 0.

Let ηj ∈ (0, 1), ψj = g(ηj), G := diag(ψ1, . . . , ψJ), H := X⊤
0 V X0.

Let Jλ(w) := ∥X1 −X0w∥2V + λ
∑

j ψjw
2
j = (X1 −X0w)

⊤V (X1 −X0w) + λw⊤Gw.

Assume ∆J := {w ∈ RJ≥0 : 1
⊤w = 1} (simplex constraints).

Let w(0) ∈ argminw∈∆J
∥X1 −X0w∥2V , w(λ) ∈ argminw∈∆J

Jλ(w) (λ > 0) (unpenalized vs.
constrained ridge minimizers).

Let r(λ) := X0w
(λ) −X1, r(0) := X0w

(0) −X1 (residuals for fit for both solutions).

Fix N = more-exposed band, S := N c = safer band.

Assumptions 3, 4 and 5 are as given in the main text.

Summary of what each component does

• Part A expands Jλ and computed gradient/Hessian explicitly, fixing strict convexity. It
isolates curvature and shows uniqueness.

• Part B writes KKT and derives the identity (B.3): the directional derivative of Jλ along a
feasible d at w(λ) equals ν(λ)⊤d. It converts “no feasible descent” into an algebraic test.

• Part C builds a concrete “band-shift” d that moves mass from an exposed m to safer
S, verifies feasibility, and evaluates the derivative via KKT. It constructs the canonical
exposure-reducing move.

• Part D compares the solutions w(λ) and w(0), yielding (w(λ))⊤Gw(λ) ≤ (w(0))⊤Gw(0). It
isolates the penalty improvement under ridge.

• Part E converts that inequality into a band-mass statement using bandwise ψ separation and
Jensen/Cauchy bounds; proves monotonicity by explicit derivatives. This part translates
quadratic penalty gains into linear mass dominance.

• Part F shows how strict first-order coverage forces a strict reduction in exposed mass when
an exposed donor carries positive weight under w(0). Therefore it establishes conditions for
strict (not just weak) dominance.
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Proof.

A. Quadratic expansion and derivatives of Jλ.

Jλ(w) = (X1 −X0w)
⊤V (X1 −X0w) + λw⊤Gw

[definition of penalized loss].

Jλ(w) = X⊤
1 V X1 − 2(X⊤

0 V X1)
⊤w + w⊤Hw + λw⊤Gw

[expand the quadratic form; H = X⊤
0 V X0].

∇wJλ(w) = 2Hw − 2X⊤
0 V X1 + 2λGw

[differentiate].

∇2
wJλ(w) = 2H + 2λG = Hλ

[Hessian is constant; adds ridge curvature along coordinate axes].

Hλ ≻ 0 ⇒ Jλ strictly convex on RJ

[by (A2)].

⇒ unique minimizer of Jλ on convex set ∆J exists

[Weierstrass + strict convexity].

B. KKT system and a key identity for directional derivatives.

L(w, µ, ν) = Jλ(w) + µ(1⊤w − 1)− ν⊤w [Lagrangian; µ ∈ R, ν ∈ RJ≥0].

KKT at(w(λ), µ(λ), ν(λ))



2Hw(λ) − 2X⊤
0 V X1 + 2λGw(λ) + µ(λ)1− ν(λ) = 0, [stationarity]

1⊤w(λ) = 1, w(λ) ≥ 0, [primal feasibility]

ν(λ) ≥ 0, [dual feasibility]

ν
(λ)
j w

(λ)
j = 0 ∀j [complementary slackness]

Let d ∈ RJ be any feasible direction with 1⊤d = 0 and, for small ϵ > 0, w(λ) + ϵd ∈ ∆J .

Compute the directional derivative of the fit part:

d

dϵ

∣∣∣
ϵ=0

∥X1 −X0(w
(λ) + ϵd)∥2V = 2 (X0w

(λ) −X1)
⊤V (X0d) = 2 r(λ)⊤V X0d.

[tangent direction preserving the simplex at first order].
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Compute the directional derivative of the penalty part:

d

dϵ

∣∣∣
ϵ=0

λ(w(λ) + ϵd)⊤G(w(λ) + ϵd) = 2λ d⊤Gw(λ)

[directional derivative for the penalty term].

⇒ d

dϵ

∣∣∣
ϵ=0

Jλ
(
w(λ) + ϵd

)
= 2 r(λ)⊤V X0d+ 2λ d⊤Gw(λ).

[collect both contributions].

(B.1)

Derive an equivalent expression using KKT: multiply stationarity by d

d⊤
(
2Hw(λ) − 2X⊤

0 V X1 + 2λGw(λ) + µ(λ)1− ν(λ)
)
= 0

[multiply stationarity by d].

2 d⊤Hw(λ) − 2 d⊤X⊤
0 V X1 + 2λ d⊤Gw(λ) + µ(λ) 1⊤d− ν(λ)⊤d = 0.

[expand the inner products].

1⊤d = 0 ⇒ 2 d⊤Hw(λ) − 2 d⊤X⊤
0 V X1 + 2λ d⊤Gw(λ) − ν(λ)⊤d = 0.

[drop the equality constraint term].

d⊤Hw(λ) = (X0d)
⊤V (X0w

(λ))

[since H = X⊤
0 V X0].

⇒ 2 (X0d)
⊤V (X0w

(λ) −X1) + 2λ d⊤Gw(λ) − ν(λ)⊤d = 0.

[substitute X0w
(λ) −X1 = r(λ)].

⇒ 2 r(λ)⊤V X0d+ 2λ d⊤Gw(λ) = ν(λ)⊤d.

[rearrange to match (B.1)].

Combine (B.1) and (B.2):
d

dϵ

∣∣∣
ϵ=0

Jλ
(
w(λ) + ϵd

)
= ν(λ)⊤d.

[exact KKT identity: first-order change equals dual-work on d].

(B.2)

Since ν(λ) ≥ 0 text and d’s signs depend on its components, (B.3) is the exact first-order

change under the constraints.
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C. A band-shift direction and its sign at w(λ).

Fix m ∈ N and choose α(m) ∈ ∆|S| as in (A3).

[select safer convex combination that covers m at first order].

Define d ∈ RJ by dm = −1, dℓ = α
(m)
ℓ (ℓ ∈ S), dj = 0 otherwise.

[move mass off m and onto safer donors in S].

1⊤d = −1 +
∑
ℓ∈S

α
(m)
ℓ = 0

[sum-to-one preserved].

∃ ϵ0 > 0 : ∀ ϵ ∈ (0, ϵ0], w
(λ) + ϵd ∈ ∆J

[feasible for small steps if w(λ)
m > 0].

d

dϵ

∣∣∣
ϵ=0

Jλ
(
w(λ) + ϵd

)
= ν(λ)⊤d =

∑
ℓ∈S

ν
(λ)
ℓ α

(m)
ℓ − ν(λ)m

[use (B.3) and the definition of d].

ν(λ)m = 0 if w(λ)
m > 0

[complementary slackness on active coordinate m].

⇒ d

dϵ

∣∣∣
ϵ=0

Jλ
(
w(λ) + ϵd

)
=

∑
ℓ∈S

ν
(λ)
ℓ α

(m)
ℓ ≥ 0

[dual feasibility and α(m) ≥ 0; no descent at the optimum].

Therefore no feasible first-order descent exists along d at w(λ) (consistency with optimality).
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D. Variational comparison: from optimality to a ψ–weighted square inequality.

Jλ
(
w(λ)

)
≤ Jλ

(
w(0)

)
[optimality of w(λ) for the penalized problem].

∥X1 −X0w
(0)∥2V ≤ ∥X1 −X0w

(λ)∥2V

[optimality of w(0) for unpenalized fit].

Rearrange the two inequalities:{
∥X1 −X0w

(λ)∥2V − ∥X1 −X0w
(0)∥2V

}
+ λ

{
(w(λ))⊤Gw(λ) − (w(0))⊤Gw(0)

}
≤ 0.

[subtract the inequalities to separate fit and penalty].

∥X1 −X0w
(λ)∥2V − ∥X1 −X0w

(0)∥2V ≥ 0

[since w(0) minimizes the fit].

⇒ λ
{
(w(λ))⊤Gw(λ) − (w(0))⊤Gw(0)

}
≤ 0.

[move nonnegative fit gap to the other side].

λ > 0 ⇒ (w(λ))⊤Gw(λ) ≤ (w(0))⊤Gw(0).

[divide by λ].
J∑
j=1

ψj
(
w

(λ)
j

)2 ≤ J∑
j=1

ψj
(
w

(0)
j

)2
[expand with G diagonal; ψj > 0].

(D.1)
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E. Turning (D.1) into a band-mass comparison.

Split the sums by N and S:∑
m∈N

ψm
(
w(λ)
m

)2
+
∑
ℓ∈S

ψℓ
(
w

(λ)
ℓ

)2 ≤ ∑
m∈N

ψm
(
w(0)
m

)2
+
∑
ℓ∈S

ψℓ
(
w

(0)
ℓ

)2
.

Define ψmin
N := min

m∈N
ψm, ψ

max
N := max

m∈N
ψm, ψ

min
S := min

ℓ∈S
ψℓ, ψ

max
S := max

ℓ∈S
ψℓ.

[bandwise extrema of penalties].

ψmin
N > ψmax

S and ψmin
N ≤ ψmax

N , ψmin
S ≤ ψmax

S

[by (A1) and N more exposed than S].

Lower bound LHS by replacing ψm ≥ ψmin
N on N and ψℓ ≥ ψmin

S on S:

ψmin
N

∑
m∈N

(
w(λ)
m

)2
+ ψmin

S

∑
ℓ∈S

(
w

(λ)
ℓ

)2 ≤ LHS

[lower-bound LHS using band minima].

Upper bound RHS by replacing ψm ≤ ψmax
N on N and ψℓ ≤ ψmax

S on S:

RHS ≤ ψmax
N

∑
m∈N

(
w(0)
m

)2
+ ψmax

S

∑
ℓ∈S

(
w

(0)
ℓ

)2
[upper-bound RHS using band maxima].

⇒ ψmin
N

∑
m∈N

(
w(λ)
m

)2
+ ψmin

S

∑
ℓ∈S

(
w

(λ)
ℓ

)2 ≤ ψmax
N

∑
m∈N

(
w(0)
m

)2
+ ψmax

S

∑
ℓ∈S

(
w

(0)
ℓ

)2
.

[sandwich ψ’s to compare sums of squares across bands].

Apply Jensen/Cauchy–Schwarz to bound sums of squares by band masses.

For any nonnegative vector u,
∑
i

u2i ≥
(
∑

i ui)
2

#{i}
[Jensen].

∑
m∈N

(
w(λ)
m

)2 ≥
c2λ
|N |

,
∑
ℓ∈S

(
w

(λ)
ℓ

)2 ≥ (1− cλ)
2

|S|
,

∑
m∈N

(
w(0)
m

)2 ≤ c20,
∑
ℓ∈S

(
w

(0)
ℓ

)2 ≤ (1−c0)2.

[Jensen lower bounds and concentration upper bounds].

cλ :=
∑
m∈N

w(λ)
m , 1− cλ =

∑
ℓ∈S

w
(λ)
ℓ , c0 :=

∑
m∈N

w(0)
m , 1− c0 =

∑
ℓ∈S

w
(0)
ℓ .

[band mass notation].

ψmin
N

c2λ
|N |

+ ψmin
S

(1− cλ)
2

|S|
≤ ψmax

N c20 + ψmax
S (1− c0)

2.

[plug the bounds into (E.1) to relate cλ and c0].

(E.1)
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Lemma E.1 (monotonicity regions).

Define f(c) := ψmin
N

c2

|N |
+ ψmin

S

(1− c)2

|S|
, g(c) := ψmax

N c2 + ψmax
S (1− c)2.

[auxiliary quadratics bounding the two sides of (⋆)].

f ′(c) = 2
ψmin
N

|N |
c− 2

ψmin
S

|S|
(1− c) = 2

(ψmin
N

|N |
+
ψmin
S

|S|

)
c− 2

ψmin
S

|S|
.

[differentiate and rearrange].

Hence f ′(c) > 0 ⇐⇒ c > c̄ :=
ψmin
S /|S|

ψmin
N /|N |+ ψmin

S /|S|
∈ (0, 1).

[region where f increases].

g′(c) = 2ψmax
N c− 2ψmax

S (1− c) = 2(ψmax
N + ψmax

S )c− 2ψmax
S .

[differentiate g].

Since ψmax
N > ψmax

S , g′(c) > 0 whenever c >
ψmax
S

ψmax
N + ψmax

S

< 1
2 .

[g is increasing past a threshold strictly below 1/2].

Therefore f and g are strictly increasing on [c̄, 1] and [1/2, 1], respectively.

[both sides monotone in the relevant upper ranges].

Consequence of Lemma E.1 for (⋆).

Suppose by contradiction cλ > c0 and cλ ∨ c0 ≥ c̄ ∨ 1
2 .

[assume ridge increases band mass in the monotone region].

Then f(cλ) > f(c0) and g(cλ) > g(c0) by monotonicity on these ranges.

[strict monotonicity].

But (⋆) says f(cλ) ≤ g(c0), yielding f(cλ) < f(cλ) (contradiction).

[upper bound on RHS cannot exceed lower bound on LHS if cλ > c0].

⇒ cλ ≤ c0

[band mass under ridge cannot exceed unpenalized band mass].
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F. Strict inequality under strict coverage.

Assume (A3) holds strictly for some m ∈ N, and w(0)
m > 0.

Consider the band-shift direction d of Part C at w(λ).

r(λ)⊤V
(
Z(m) −X.,m

)
< 0

[strict fit improvement toward safer combo at first order].

Using the scalar KKT on coordinates (active/inactive) we have for each j:

X⊤
.,jV r

(λ) + λψjw
(λ)
j + µ(λ)

2 − ν
(λ)
j

2 = 0.

[scalar KKT from Part B, active/inactive unified].

Multiply by α(m)
ℓ and sum over ℓ ∈ S, then subtract the equality for j = m:∑

ℓ∈S
α
(m)
ℓ

(
X⊤
.,ℓV r

(λ) + λψℓw
(λ)
ℓ + µ(λ)

2 − ν
(λ)
ℓ
2

)
−
(
X⊤
.,mV r

(λ) + λψmw
(λ)
m + µ(λ)

2 − ν
(λ)
m
2

)
= 0.

[weighted sum over S minus the m equation].

⇒
∑
ℓ∈S

α
(m)
ℓ (X.,ℓ −X.,m)

⊤V r(λ) + λ
(∑
ℓ∈S

α
(m)
ℓ ψℓw

(λ)
ℓ − ψmw

(λ)
m

)
− 1

2

∑
ℓ∈S

α
(m)
ℓ ν

(λ)
ℓ + 1

2ν
(λ)
m = 0.

[collect terms; note the ν terms].

ν(λ)m = 0 if w(λ)
m > 0

[active coordinate m].

⇒ λ
(∑
ℓ∈S

α
(m)
ℓ ψℓw

(λ)
ℓ − ψmw

(λ)
m

)
= −

∑
ℓ∈S

α
(m)
ℓ (X.,ℓ −X.,m)

⊤V r(λ) + 1
2

∑
ℓ∈S

α
(m)
ℓ ν

(λ)
ℓ .

[identity used to substitute penalty difference].

Compute the directional derivative explicitly using (B.1):

d

dϵ

∣∣∣
ϵ=0

Jλ
(
w(λ) + ϵd

)
= 2 r(λ)⊤V (Z(m) −X.,m) + 2λ

(∑
ℓ∈S

α
(m)
ℓ ψℓw

(λ)
ℓ − ψmw

(λ)
m

)
.

[directional derivative via (B.1)].

Substitute the identity above:

= 2 r(λ)⊤V (Z(m) −X.,m)− 2
∑
ℓ∈S

α
(m)
ℓ (X.,ℓ −X.,m)

⊤V r(λ) +
∑
ℓ∈S

α
(m)
ℓ ν

(λ)
ℓ .

[substitute the penalty identity].
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∑
ℓ∈S

α
(m)
ℓ (X.,ℓ −X.,m)

⊤V r(λ) = r(λ)⊤V (Z(m) −X.,m)

[linearity of inner product].

⇒ d

dϵ

∣∣∣
ϵ=0

Jλ
(
w(λ) + ϵd

)
= 0 +

∑
ℓ∈S

α
(m)
ℓ ν

(λ)
ℓ =

∑
ℓ∈S

α
(m)
ℓ ν

(λ)
ℓ ≥ 0.

[KKT-consistent; equality if all ℓ active].

Strict coverage (< 0 in fit) + (A1) lower ψ on S) ⇒ feasible moves that reduce N -mass

cannot improve Jλ at w(λ).Therefore the penalized solution must have strictly less N -mass than a

positive-mass w(0) on the strictly dominated m]. ⇒
∑

m∈N w
(λ)
m <

∑
m∈N w

(0)
m ., entailing strict

band-mass dominance.

G. Conclusion.

Part E establishes
∑
m∈N

w(λ)
m ≤

∑
m∈N

w(0)
m .

[weak dominance from variational bounds + monotonicity].

Part F shows strict inequality when (A3) is strict for some m ∈ N with w(0)
m > 0.

[strict dominance requires a strictly covered exposed donor carrying mass in w(0)].
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A.4 Theorem 4 Proof

Theorem 8 (Exposure-weighted unconstrained ridge: bias envelope and tuning monotonicity).
Let wUR(λ) solve (17) with λ > 0 under the exposure-aligned schedule in Assumption 3. For any
exposed set N ̸= ∅ with ψ

N
:= minj∈N ψj > 0,∣∣∣∑

j∈N
wURj (λ)

∣∣∣ ≤
√

|N |ψ−1/2
N

∥∥D1/2
ψ wUR(λ)

∥∥
2
,

and the map λ 7→ ∥D1/2
ψ wUR(λ)∥2 is nonincreasing with limλ→∞ ∥D1/2

ψ wUR(λ)∥2 = 0. Conse-
quently, under the localized, time-homogeneous model of Section 2 (Theorem 5),∣∣τ̂URt (λ)− τt

∣∣ ≤ ρ |τt|
√
|N |ψ−1/2

N

∥∥D1/2
ψ wUR(λ)

∥∥
2
,

and, more generally, for any nonnegative exposure-aligned profile {δjt} with ψm ≥ ψℓ ⇒ δmt ≥ δℓt,∑
j

wURj (λ) δjt ≤ ∥δN,t∥2 ψ−1/2
N

∥∥D1/2
ψ wUR(λ)

∥∥
2
.

Hence the right-hand side is nonincreasing in λ and vanishes as λ→ ∞.

Local setup for Thm. 8

Define treatment predictors, donor matrix and positive-definite metric as X1 ∈ RK , X0 =
[X.,1, . . . , X.,J ] ∈ RK×J , V = diag(v1, . . . , vK) ≻ 0.

Set reach scores, exposure-aligned penalties, and diagonal penalty operator: ηj ∈ (0, 1), ψj =
g(ηj), Dψ := diag(ψ1, . . . , ψJ), g strictly decreasing, bounded away from {0, 1}.

Define the unconstrained ridge problem as a fit term + exposure-weighted ridge penalty:
Jλ(w) := ∥X1 −X0w∥2V + λ ∥D1/2

ψ w∥22, λ ≥ 0.

Hold no simplex constraints, having a feasible set enlarged relative to SCM standard problems:
w ∈ RJ (may be negative; need not sum to one).

Assumptions 3, 4 and 5 are as given in the main text.

Summary of what each component does

• Part A derives the normal equations and closed form wUR(λ) = (X⊤
0 V X0+λDψ)

−1X⊤
0 V X1.

In short, it makes the program self-contained and fixes notation for spectral bounds.

• Part B proves the exposed-sum bound
∣∣∑

j∈N wj
∣∣ ≤ √

|N |ψ−1/2
N

∥D1/2
ψ w∥2. This replaces

mass arguments (invalid without simplex) by a clean ℓ2 control aligned with exposure.

• Part C establishes ridge-path monotonicity ∥D1/2
ψ wUR(λ)∥2 nonincreasing in λ, and → 0 as

λ→ ∞ via a resolvent/spectral bound. This part gives a tuning parameter that uniformly
shrinks the exposure-weighted norm.

• Part D translates these ingredients into bias envelopes: contamination ρ τt
∑

j∈N w
UR
j is

bounded by a term that is (i) nonincreasing in λ and (ii) vanishes as λ → ∞; the same
logic extends to any nonnegative, exposure-aligned profile supported on N
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Proof.

A. Normal equations and closed form (for completeness).

Jλ(w) = (X1 −X0w)
⊤V (X1 −X0w) + λw⊤Dψw

[expand objective].

∇wJλ(w) = −2X⊤
0 V (X1 −X0w) + 2λDψw

[differentiate term-by-term].

Set gradient to zero:

− 2X⊤
0 V X1 + 2X⊤

0 V X0w + 2λDψw = 0

[first-order optimality].

(X⊤
0 V X0 + λDψ)w = X⊤

0 V X1

[normal equations].

λ > 0 & Dψ ≻ 0 ⇒ X⊤
0 V X0 + λDψ ≻ 0

[strict positive definiteness; (A2)].

⇒ wUR(λ) = (X⊤
0 V X0 + λDψ)

−1X⊤
0 V X1.

[closed form (18)].
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B. Exposed-sum bound

∣∣∣∑
j∈N

wj

∣∣∣ = ∣∣1⊤NwN ∣∣
[notation: wN restriction to N , 1N all-ones on N ].

≤ ∥1N∥2 ∥wN∥2

[Cauchy–Schwarz].

=
√
|N | ∥wN∥2

[Euclidean norm of 1N is
√
|N |].

∥wN∥2 =
∥∥D−1/2

ψ D
1/2
ψ wN

∥∥
2

[insert I = D
−1/2
ψ D

1/2
ψ on N ].

≤ ∥D−1/2
ψ ∥op,N ∥D1/2

ψ wN∥2

[operator-norm bound].

∥D−1/2
ψ ∥op,N = ψ−1/2

N
, ψ

N
:= min

j∈N
ψj > 0

[largest singular value on N equals 1/
√

min
N

ψ].

∥D1/2
ψ wN∥2 ≤ ∥D1/2

ψ w∥2

[restriction cannot increase the norm].

⇒ ∥wN∥2 ≤ ψ−1/2
N

∥D1/2
ψ w∥2

[combine the last two displays].

⇒
∣∣∣∑
j∈N

wj

∣∣∣ ≤
√

|N |ψ−1/2
N

∥D1/2
ψ w∥2 (UR.1)

[exposed-sum controlled by the exposure-weighted ℓ2 norm].
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C. Ridge path monotonicity.

Write Jλ(w) = L(w) + λP (w), L(w) := ∥X1 −X0w∥2V , P (w) := ∥D1/2
ψ w∥22.

[separate fit and penalty].

0 ≤ λ1 < λ2, w1 := wUR(λ1), w2 := wUR(λ2).

[pick two tuning values].

L(w1) + λ1P (w1) ≤ L(w2) + λ1P (w2)

[optimality of w1 for Jλ1 ].

L(w2) + λ2P (w2) ≤ L(w1) + λ2P (w1)

[optimality of w2 for Jλ2 ].

Add the two:
(
L(w1)− L(w2)

)
+
(
L(w2)− L(w1)

)
+ λ1P (w1) + λ2P (w2)

≤ λ1P (w2) + λ2P (w1).

[cancel L terms].

λ1P (w1) + λ2P (w2) ≤ λ1P (w2) + λ2P (w1)

[rearrange].

(λ2 − λ1)
(
P (w1)− P (w2)

)
≥ 0

[λ2 > λ1].

⇒ P (w2) ≤ P (w1) ⇐⇒ ∥D1/2
ψ wUR(λ2)∥2 ≤ ∥D1/2

ψ wUR(λ1)∥2 (UR.2)

[monotone nonincreasing in λ].

Limit as λ→ ∞: wUR(λ) = (X⊤
0 V X0 + λDψ)

−1X⊤
0 V X1.

[closed form].

∥(X⊤
0 V X0 + λDψ)

−1∥op ≤ 1

λλmin(Dψ)
=

1

λψ

[spectral bound: λmin(A+ λB) ≥ λλmin(B) for A ⪰ 0, B ≻ 0].

∥D1/2
ψ wUR(λ)∥2

≤ ∥D1/2
ψ ∥op ∥(X⊤

0 V X0 + λDψ)
−1∥op ∥X⊤

0 V X1∥2

[submultiplicativity of operator norm].

=

√
ψ · 1

λψ
· ∥X⊤

0 V X1∥2 −→ 0 as λ→ ∞ (UR.3)

[ψ := max
j
ψj <∞ by (A1)].
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D Bias bounds under localized and aligned spillovers

Localized, time-homogeneous spillovers (Theorem 5): τ̂URt (λ)− τt = ρ τt
∑
j∈N

wURj (λ).

[contamination channel depends on exposed sum].∣∣τ̂URt (λ)− τt
∣∣ = ρ |τt|

∣∣∣∑
j∈N

wURj (λ)
∣∣∣

[absolute distortion].

≤ ρ |τt|
√
|N |ψ−1/2

N

∥∥D1/2
ψ wUR(λ)

∥∥
2

[apply (UR.1) with w = wUR(λ)].

By (UR.2) and (UR.3), RHS is nonincreasing in λ and → 0 as λ→ ∞.

[tuning monotonicity and vanishing envelope].

General nonnegative exposure-aligned profile {δjt} supported on N :∑
j

wURj (λ) δjt =
∑
j∈N

wURj (λ) δjt

[localized exposure concentrated on N ].

≤ ∥δN,t∥2 ∥wURN (λ)∥2

[Cauchy–Schwarz on N ].

≤ ∥δN,t∥2 ψ−1/2
N

∥D1/2
ψ wUR(λ)∥2.

[use ∥wN∥2 ≤ ψ−1/2
N

∥D1/2
ψ w∥2 as in Part 1].

Hence the envelope is nonincreasing in λ and vanishes as λ→ ∞ by (UR.2)–(UR.3).

[same monotonicity and limit].
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A.5 Spatial reach mapping

To avoid any tuning on outcomes, we calibrate f from the empirical distribution of distances

alone using a logistic map,

f(d) =
1

1 + exp{−κ(d− c)}
. (21)

Let dL and dU denote the (q, 1 − q) quantiles of {d(j, p)}j ̸=p for a small q; we take q = 0.025.

Fix a tail level ε ∈ (0, 1/2); we take ε = 0.025. Imposing f(dL) = ε and f(dU ) = 1− ε yields

c =
dU + dL

2
, κ =

2 log
(
1−ε
ε

)
dU − dL

.

This anchors ηj = f(d(j, p)) smoothly over (ε, 1− ε) so that proximate donors receive ηj near ε

and distant donors near 1− ε. We maintain ηj ∈ [ε, 1− ε] for all donors to keep the optimization

well-posed.

In applied work, c and κ can and should be calibrated with auxiliary information and domain

knowledge.

Examples include: (i) setting c to a substantively meaningful distance (e.g., a commuting or

media-market radius) and choosing κ so that f halves over a prespecified range; (ii) mapping

d to network-path lengths derived from mobility/commuting matrices and anchoring (dL, dU )

to empirical percentiles of those effective distances; or (iii) selecting (c, κ) so that f matches a

pre-specified decay (e.g., half-life) suggested by prior studies of diffusion. In our simulations and

applications, the quantile-anchored defaults (q, ε) = (0.025, 0.025) provided stable behavior and

transparent reporting without outcome-based tuning.
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A.6 Ring geometry and mapping from continuous to discretized exposure

scores

Figure A.1 illustrates the ring geometry (grid with concentric circles centered at p⋆) and the

mapping from continuous distance dip⋆ to discretized exposure scores sk ≈ κ(dip⋆ ; θ).)
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A.7 Alternative rings contrast

(a) 2 vs 3 Contrast for Missouri,
p = 0.9591

(b) 3 vs 4 Contrast for Colorado,
p = 0.5102041

Figure 6: Alternative contrasts
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