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1 Introduction

Synthetic control (SC) methods have become a central tool in causal inference, especially for
comparative case studies with one or a few treated units. SC is attractive because it offers a
transparent way to construct credible counterfactuals without strong functional form assumptions.
Instead of extrapolating trends from a model, SC builds a synthetic counterfactual by assigning
weights to untreated donor units so that their weighted average reproduces the treated unit’s
pre-intervention trajectory(Abadie, 2021; Abadie & Gardeazabal, 2003; Abadie et al., 2010, 2015).
Its appeal is evident in canonical applications: quantifying the effect of California’s Proposition 99
tobacco-control program on cigarette sales (Abadie et al., 2010), assessing the macroeconomic
consequences of German reunification (Abadie et al., 2015), and evaluating environmental and
health policies in comparative case studies (e.g., Kikuta, 2020; Kreif et al., 2016). The sparsity
and interpretability of SC (few key donors with explicit weights) are a large part of its appeal,
but as we discuss, they also create a unique vulnerability when there is interference or policy

spillovers between units.

This attractiveness just described comes from SC’s design. Unlike conventional difference-
in-differences (DiD), SC avoids imposing a parametric form on outcome trends and instead
constructs its counterfactual by drawing on untreated comparison units—commonly called donors.
Each donor is assigned a weight via optimization so that their average trajectory reproduces
that of the treated unit before the intervention. This pre-treatment similarity, often described

as fit, is the foundation on which SC builds its counterfactual: the method assumes that if the
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synthetic reproduces the treated unit well before the intervention, it will also approximate what

would have happened afterward in the absence of treatment (Abadie, 2021).

A potentially unrealistic assumption follows from this design choice. Because SC uses post-
treatment donor outcomes to form the counterfactual, it naturally relies on the no-interference
component of SUTVA—unit i’s outcome depends only on its own treatment, not on others’
assignments (Holland, 1986; Rubin, 1980). In spatially and networked settings, where policies
plausibly diffuse, this assumption is especially prone to violation. When policies propagate across
space or networks, outcomes may depend on neighbors’ treatments; formal treatments describe
interference by mapping the treatment vector to unit-level exposure via an exposure function

(Aronow & Samii, 2017; Hudgens & Halloran, 2008).

All causal inference designs lean on SUTVA as a baseline assumption, but SC is especially
vulnerable when spillovers are present. In designs such as difference-in-differences, matching, or
regression discontinuity (RDD), contamination can attenuate estimated effects, but the influence
of any single unit is inherently limited by the structure of the estimator. In DiD, the average
outcome of many untreated units forms the counterfactual, so spillovers from a few controls
are diluted in the aggregate. In matching, treated units are paired with multiple comparators,
reducing the leverage of any single contaminated control. In RDD, identification relies on local
contrasts around a cutoff, where spillovers near the threshold may blur the comparison but

typically affect both sides symmetrically.

By contrast, SC deliberately assigns large weights to a small set of untreated units to reproduce
the treated unit’s pre-period trajectory. If even one of these heavily weighted donors is exposed
to spillovers, the resulting contamination enters the synthetic counterfactual directly and is
magnified in proportion to the assigned weight. In this sense, interference does not simply add
noise but systematically biases the SC estimator, since the very units that best approximate the

treated unit before intervention are the ones most likely to drive bias after treatment.

Practice-oriented discussions in SC emphasize donor-pool curation to avoid such pitfalls
(Abadie, 2021), but ad hoc trimming does not resolve the underlying tension between fit and
exposure, and have other negative consequences. Related approaches—augmented or regularized
SC and factor-model variants—can stabilize estimation yet still inherit the same reliance on
uncontaminated donors in the post-period (Abadie & L’Hour, 2021; Ben-Michael et al., 2021;

Doudchenko & Imbens, 2016). A common remedy is to remove suspect neighbors or to adapt



methods developed for settings with multiple treated units (e.g., Cavallo et al., 2013; Firpo &
Possebom, 2018; Kreif et al., 2016; Robbins & Saunders, 2017; Xu, 2017).

The central concern for our purposes is efficiency: the very donors most informative for
pre-treatment fit are often geographically proximate and thus the most at risk for spillovers;
discarding them can impose a large information cost. In practice, trimming contaminated donors
removes precisely those units that often most closely resemble the treated unit. The immediate
consequence is a weaker pre-treatment balance, as the synthetic no longer aligns as tightly with
the treated unit’s trajectory before intervention. With fewer available controls, weights are then
spread over less comparable donors, often forcing extrapolation and inflating the variance of the
estimate. For applied researchers, this creates a credibility problem: if the pre-period match
deteriorates after trimming, the very basis for trusting the post-treatment counterfactual (its

ability to track history) breaks down.

With interference, the SC estimator incorporates outcomes from donors that may themselves
be affected by the treatment. Let Y7; denote the treated unit’s outcome and lejtv = Zﬁﬂ w;Yj
the synthetic predictor. If donor j receives a spillover dj; in the post-treatment period, its
outcome can be written as Yj; = Yj(0) + d;¢, where Y;;(0) is the outcome absent exposure. The
synthetic predictor therefore includes an additional term Zj# w;d;¢, so that the SC estimand
can be rewritten as 7y = (Ylt(l) — Z#l ij}t(O)) — Zj#l w;d;e. The first term captures the
treatment effect of interest under no interference, while the second term reflects a weighted
average of spillovers among donors. Hence, whenever exposed donors receive positive or negative
spillovers, the SC estimate is systematically biased in proportion to the weights assigned to those

donors.

We take a design-based route that targets the object through which interference contaminates
SC: the weights. The first step is a diagnostic that asks whether units located near the treated
unit evolve differently after treatment than those farther away. To formalize this, we partition
the donor pool into concentric distance rings and compare post- versus pre-treatment changes
across rings. The null hypothesis is a Fisher sharp null of no effect: outcomes should display no
systematic difference by proximity to the treated unit around treatment time. We evaluate this
null using randomization inference, which yields exact p-values in finite samples under minimal
assumptions (Bowers et al., 2017; Fisher, 1935; Rosenbaum, 2002). Naturally, this exactness

property is not tied to the SC estimator, as it follows directly from the design-based logic of



randomization inference and holds regardless of the model used to construct counterfactuals.

Second, conditional on rejecting the null and detecting evidence of proximity-related spillovers,
we introduce three corrections that incorporate spatial reach—a continuous exposure mapping
from distance to a proximity score—directly into the SC optimization, using only pre-period

information and leaving outcomes in the post-period untouched.

Our framework rests on two key insights. First, we formalize spatial exposure using the
exposure-mapping framework from the interference literature (Aronow & Samii, 2017; Hudgens
& Halloran, 2008; Manski, 2013; Tchetgen Tchetgen & VanderWeele, 2012; T. VanderWeele,
2015) and show that, within SC, the impact of interference reduces to a single bias pathway: the
aggregate weight mass assigned to likely exposed donors. A simple decomposition makes this
link explicit and motivates both our diagnostic and the structure of the corrections. Second,
we design estimators that operate directly on this pathway while preserving, when desired, the

convex-combination interpretation that makes SC attractive for applied work.

The central problem in place is sensitivity to interference: because SC constructs the counter-
factual from post-treatment outcomes of untreated donors, any positive weight on donors whose
outcomes are affected by spillovers propagates that exposure into the synthetic and, hence, into

the estimated effect.

Our adjustments address this problem by modifying the geometry of the estimator so as to limit
the influence of proximate donors, each in a distinct way. Covariate rescaling alters the predictor
space itself: by multiplying each donor’s predictor column by a proximity score, nearby donors
appear less similar to the treated unit, shifting the feasible convex hull toward safer comparisons
while weights remain on the simplex. Constrained ridge leaves the predictor space unchanged but
penalizes exposure directly in the weight optimization: an exposure-weighted ¢ penalty shrinks
mass away from high-risk donors while preserving convexity and the interpretation of weights as
a convex combination, linking directly to penalized SC variants that temper extrapolation with
regularization (Abadie & L’Hour, 2021; Ben-Michael et al., 2021; Doudchenko & Imbens, 2016).
Unconstrained ridge relaxes the simplex entirely, allowing negative and non-summing weights,
and applies an exposure-weighted ridge penalty to dampen or even offset contaminated donors;
this yields the most aggressive reduction of exposure risk but sacrifices the convex-combination
interpretation, following the classical ridge/Tikhonov tradition (Hastie et al., 2009; Hoerl &

Kennard, 1970). In all three cases, geographic or network structure provides an exogenous



measure of proximity, and tuning is based solely on pre-treatment information, ensuring that

adjustments are guided by design rather than post-treatment outcomes.

Our evidence is designed both to evaluate the properties of the proposed adjustments and to
demonstrate their usefulness in applied settings. We begin with a simulation study that varies
the magnitude of the treated effect and the intensity of spillovers, showing that baseline SC
can be substantially biased while the adjustments consistently reduce bias without sacrificing
pre-treatment fit. We then turn to four canonical applications. Applying the ring diagnostic to
the original donor pools in Abadie et al. (2010), Abadie et al. (2015), and Kikuta (2020), as well
as to a U.S. policy case of the sort considered by Ben-Michael et al. (2021), we find no evidence
of interference in the original designs. By contrast, when we expand the West Germany study
to a broad, data-complete donor set (roughly 150 countries constructed to mirror the original
predictors and preprocessing), the diagnostic detects interference. On that expanded design,
the spatial-reach corrections materially alter the estimated effect, underscoring the practical

consequences of explicitly accounting for spillovers in SC.

The paper is organized as follows. Section 2 situates SUTVA in SC and reviews exposure
mappings for interference. Section 3 develops the ring diagnostic and randomization test.
Section 4.1 introduces spatial reach and covariate rescaling. Section 5 develops constrained ridge;
an unconstrained ridge variant follows thereafter. We then report simulations and revisit the
empirical applications, including the expanded West Germany design. A final section discusses
practical guidance for diagnosis, design, and interpretation when interference is a live concern in

synthetic control analyses.

1.1 Relevant literature

Our work connects to and extends several strands of recent literature on synthetic control,
interference, and spatial dependence. First, a large literature has generalized the original SC
framework of Abadie and Gardeazabal (2003) and Abadie et al. (2010, 2015) into a broader class
of regularized and factor-based panel estimators. The Augmented Synthetic Control Method of
Ben-Michael et al. (2021) blends SC with outcome regression to obtain doubly robust estimates
and improved pre-treatment balance even when a pure SC fit is poor. Abadie and L’Hour (2021)
propose a penalized synthetic control estimator that introduces an fo penalty on weights to

stabilize estimation in disaggregated settings. Related approaches recast SC within low-rank or



interactive fixed-effects frameworks, including matrix completion methods for causal panel data
(Athey et al., 2021), generalized synthetic control (Xu, 2017), synthetic difference-in-differences
(Arkhangelsky et al., 2021), and comparisons of SC to interactive fixed-effects models in applied
regional evaluations (e.g., Gobillon & Magnac, 2016). These methods primarily address bias from
extrapolation and limited pre-treatment fit; by contrast, our focus is on bias from interference, and

our exposure-weighted adjustments can, in principle, be combined with any of these estimators.

Second, our framework builds on the potential-outcomes literature on interference and exposure
mappings. Hudgens and Halloran (2008) and Aronow and Samii (2017) formalize interference
by mapping the joint treatment assignment into unit-level exposure variables and studying
identification under partial interference. Subsequent work has developed sensitivity analyses
and estimands under unknown or complex interference patterns (e.g., Manski, 2013; Savje et al.,
2021; Tchetgen Tchetgen & VanderWeele, 2012; T. VanderWeele, 2015; T. J. VanderWeele
et al., 2014). Randomization-based approaches extend Fisherian inference to interference settings
using exposure mappings and exact tests (Athey et al., 2018; Basse et al., 2019; Bowers et al.,
2017). We adopt this design-based perspective: geography (or a known network) provides an
exposure mapping, and our ring diagnostic is a randomization test tailored to proximity-patterned

interference in SC designs.

Third, there is a growing literature that directly studies spillovers in SC and closely related
factor-model estimators. Cao and Dowd (2019) analyze estimation and inference for SC in the
presence of spillover effects under a linear factor structure, while Di Stefano and Mellace (2020)
propose the inclusive Synthetic Control Method. Parallel developments in spatial econometrics
model spillovers parametrically through spatial-lag or SLX specifications and have been combined
with difference-in-differences designs to separate direct and indirect effects (Delgado & Florax,
2015; Vega & Elhorst, 2015). Our contribution is complementary: rather than specifying a
parametric spatial-lag model or a factor structure for spillovers, we use an exposure mapping and
pre-treatment-only information to (i) diagnose proximity-patterned spillovers and (ii) modify the

SC weight geometry so as to limit the influence of exposed donors.



2 Spatial/Network Dependence and SUTVA in Synthetic Control

2.1 Synthetic control versus other designs under interference

Causal analyses of comparative case designs rest on the Stable Unit Treatment Value Assumption
(SUTVA), which asserts that unit i’s potential outcome under a joint assignment (z1,...,274+1)
depends only on its own assignment z;, and that there are no hidden versions of treatment
(Holland, 1986; Rubin, 1980). Formally, SUTVA restricts Y;(z1, ..., 2+1) to Y;(z;) and guarantees
a single well-defined potential outcome for each treatment level. Together with consistency
(VP = Yi(2)), this delivers the identification bridge that causal designs exploit: when a
donor j is untreated (z; = 0), its observed outcome equals its no-treatment potential outcome,

Yﬁbg = Y;:(0), regardless of the assignments received by other units.

Hence untreated units can supply information about the missing no-treatment path of a
treated unit, Y1,(0), by enabling cross-unit substitution of observed outcomes for potential
outcomes. The same invariance underpins placebo and permutation procedures: randomization
or placebo-in-space tests rely on the distributional equivalence induced by SUTVA to compare
treated units to re-labeled controls without introducing assignment-dependent distortions. Absent
SUTVA, observed donor outcomes would in general be Y;;(0; z_;) and could vary with other
units’ assignments, severing the link Yﬁbs = Yj;(0) that comparative estimators require and
undermining the causal interpretation of cross-unit contrasts.

)

When policies propagate through geography or networks, outcomes may depend on neighbors
assignments and, as discussed above, SUTVA is violated. In such cases interference must be
addressed explicitly, whether through exposure mappings that compress the assignment vector
into lower-dimensional summaries of relevant neighbors (Aronow & Samii, 2017; Hudgens &
Halloran, 2008; Manski, 2013), through randomization-based testing strategies (Bowers et al.,
2017; Rosenbaum, 2007), or through epidemiological and statistical approaches that study
identification, estimands, and sensitivity analysis under interference (e.g., Sévje et al., 2021;
Tchetgen Tchetgen & VanderWeele, 2012; T. J. VanderWeele et al., 2014). For synthetic control
(SC), these issues are especially acute: because post-treatment donor outcomes enter directly
into the construction of the counterfactual, even partial exposure of donors introduces bias into
the estimator. Interference is thus not a secondary complication but a direct pathway through

which SC can be distorted—a point we develop formally further below.



Within this broader landscape, synthetic control (SC) is attractive because it enables transpar-
ent, design-based comparisons in comparative case studies with few units (Abadie, 2021; Abadie
& Gardeazabal, 2003; Abadie et al., 2010, 2015). To see why SUTVA plays a distinctive role in
SC, recall how the estimator is constructed. Let X; € R denote the treated unit’s pre-treatment
predictors and Xy € RE*I7| the same predictors for donors J C {2,...,J+1}. SC selects weights
weA={w>0:1"w =1} to minimize the pre-period discrepancy || X; — Xow||?, with V > 0
diagonal, and then applies the same convex weights to donor outcomes in the post-treatment
period. This design pays for minimal trend structure with a crucial reliance on SUTVA: because
the post-period donor outcomes enter the synthetic predictor, they must correspond to units with
no direct treatment and no indirect exposure. If donors are even partially exposed, the synthetic
counterfactual absorbs part of the treated effect and the estimated impact is distorted.! This
mechanism is the synthetic-control manifestation of the bias channel emphasized in linear-factor

settings when post-period shocks correlate with the weights (Ferman & Pinto, 2021).

The nature of this distortion can be summarized in a compact bias expression. For post-

treatment periods t > Tp, the SC estimator based on observed donors admits the decomposition

o= [YM(O) —Ylic(O)] + 7 - thij, (1)

JEN
where the three terms correspond respectively to (i) a SUTVA synthetic mismatch between the
treated unit’s no-treatment outcome and its synthetic approximation, (ii) the direct treatment
effect 1, and (iii) a contamination mass equal to the treated effect multiplied by the weight
assigned to exposed donors. This decomposition highlights that even if the synthetic perfectly
reproduces the treated unit’s no-treatment path under SUTVA, 7 will still differ from 7, whenever

positively weighted donors are exposed. A simplified version makes this transparent:

fo=m - pm Y wy (2)

JEN

Equation (1) will be derived formally in the subsection below, but we present it here to build

intuition: SC estimates equal the true effect minus a weighted spillover term, with the magnitude

!The typical case is attenuation: the synthetic estimate is pulled toward the treated outcome when spillovers
raise donor outcomes in the same direction as the treatment effect, yielding an underestimate of the true effect.
However, the bias need not always be attenuating. If spillovers move donor outcomes in the opposite direction of
the treated effect, the synthetic may overshoot, producing an amplified estimate of the effect. This possibility
highlights that interference does not merely add noise but can fundamentally alter the direction and magnitude of
the estimated effect (as we will exhibit with our replications



of bias governed jointly by the diffusion intensity p, the treatment effect 7, and the weight mass

placed on exposed donors.

Equation (1) highlights the mechanism through which spillovers distort synthetic control: any
exposure among positively weighted donors feeds directly into the estimated effect. To appreciate
the severity of this channel, it is useful to situate SC relative to other common designs. All
causal estimators rely on SUTVA to justify using untreated outcomes as counterfactuals, but the
manner in which donor outcomes enter differs sharply across designs, and so too does the impact

of violations.

In difference-in-differences, for example, the control mean aggregates outcomes across many
untreated units, assigning each only modest influence. Contamination of a few controls typically
attenuates the estimate, but the effect is diluted across the pool and becomes material only if
spillovers are widespread. Matching designs are more localized: bias arises when a treated unit is
paired with an exposed control, but the damage is confined to that pair and does not propagate
automatically to others. Regression discontinuity designs present yet another contrast: because
identification exploits outcomes just above and below the cutoff, spillovers would bias the design
only if they differentially affect the two sides of the threshold; broader or symmetric diffusion

often cancels out.

Synthetic control stands apart. The estimator compresses the counterfactual for the treated
unit into a single convex combination of donors, often dominated by a handful of high-weight
contributors chosen precisely for their ability to replicate pre-treatment trajectories. This sparsity
is central to SC’s appeal: by concentrating on a few well-aligned donors, the method achieves
close balance without imposing parametric trend restrictions. Yet the same feature that delivers
this balance under SUTVA makes the design acutely vulnerable under violations. If even one
heavily weighted donor is exposed to spillovers, the contamination is not averaged away, confined
to a pair, or offset symmetrically; it flows directly into the counterfactual in proportion to the
assigned weight. In this setting, interference is not averaged out, localized, or offset symmetrically:

it enters deterministically through the weights.

A single exposed donor can shift the estimated effect in proportion to its assigned weight,
and the donors most capable of reproducing the treated trajectory—the ones the optimization
favors—are frequently those most plausibly exposed. In this sense, SC transforms what might be

a modest attenuation in DiD or a pair-specific distortion in matching into a direct and systematic



bias channel. The contamination mass term in equation (1) formalizes this: the post-treatment
estimate depends not only on the direct effect but also on the weighted share of the treated
effect leaking into the synthetic. For this reason, SC does not merely inherit SUTVA as a
background condition for identification—it is structurally entangled with it. Donor outcomes
after treatment are the building blocks of the counterfactual, so once they are contaminated, bias
enters mechanically through the weights. This is not a secondary complication but a first-order
vulnerability. Later sections formalize this point: the bias decomposition in equation (1) shows
that the estimated effect consists of the true effect plus a contamination mass proportional to
the total weight placed on exposed donors. Effective corrections must therefore operate directly

on this pathway, reshaping the weight structure that transmits interference into the estimate.

In practice, one response to the risk of spillovers is to restrict the donor pool by trimming
proximate or substantively linked units, or to adapt estimators designed for settings with multiple
treated units (e.g., Cavallo et al., 2013; Firpo & Possebom, 2018; Kreif et al., 2016; Robbins
& Saunders, 2017; Xu, 2017). Let J* denote the full donor set admissible under standard SC
assumptions and J C J* the subset retained after trimming. Because J is a strict subset,
the optimization problem that defines the synthetic weights is solved over a reduced feasible
region. While trimming may lower the exposed weight mass ) jeN Wj and thereby reduce the
contamination term in equation (1), it simultaneously constrains the construction of Y;3¢(0) to a

smaller space of convex combinations.

The consequence is that pre-treatment imbalance || X7 — Xow||y cannot improve and will
typically worsen, leading to a larger design-driven discrepancy Y1,(0) — ¥;3¢(0). In finite samples
this trade-off manifests concretely: fewer admissible donors reduce the effective dimensionality of
the comparison set, variance of the estimator increases, and the credibility of the counterfactual
trajectory is weakened when the synthetic fails to reproduce the treated unit’s pre-treatment
path. In short, trimming addresses one bias pathway by construction but aggravates another,
and the resulting estimator may be both noisier and harder to interpret. Regularized and
augmented variants of SC (Abadie & L’Hour, 2021; Arkhangelsky et al., 2021; Athey et al.,
2021; Ben-Michael et al., 2021; Doudchenko & Imbens, 2016; Gobillon & Magnac, 2016) partially
stabilize estimation, but because they continue to rely on post-period donor outcomes, they

inherit the same interference sensitivity unless exposure is incorporated directly into the design.

These considerations motivate the approach we take in the remainder of the paper. We

10



operationalize interference using an outcome-agnostic, monotone exposure mapping based on
geography (or a known network) and show that SC’s sensitivity to spillovers can be reduced by
acting directly on the object through which contamination flows—the weights. In the next section
we employ a randomization-based diagnostic that tests for proximity-patterned changes in donor
outcomes around the treated unit, and subsequent sections incorporate the exposure mapping
into estimation through covariate rescaling and ridge augmentations that shift mass away from
likely exposed donors while preserving pre-period fit and, when desired, the convex-combination

interpretation that makes SC useful for applied work.

2.2 Formalizing the distortion caused by interference

SUTVA’s locus inside SCM is immediate: for }A/I(to) to represent Y1;(0), each positively weighted
donor must be observed under no direct treatment and no indirect exposure to the treated unit.
Abadie’s overview emphasizes this point in practice: researchers often curate donor pools to
avoid neighboring or economically linked regions precisely to protect the counterfactual from
spillovers (Abadie, 2021). Beyond such design heuristics, there is now a growing literature that is
working on dealing with spillovers in SCM and factor models, estimating both direct and indirect
effects (e.g., Cao & Dowd, 2019; Di Stefano & Mellace, 2020). Parallel developments in spatial
econometrics likewise model spillovers parametrically (e.g., SLX or spatial-lag specifications)
and have been combined with difference-in-differences to separate direct and indirect effects,
underscoring the importance of interdependence in social sciences applications (Delgado & Florax,

2015; Vega & Elhorst, 2015).

To study the consequences of interference in a transparent way, we adopt a stylized diffusion
approach that isolates the bias channel in SCM. The construction proceeds as: it separates
the problem into three quantities. First, the size of the treated effect 74, which determines the
magnitude of the policy shock. Second, the diffusion intensity p; € [0,1], which governs the
fraction of the treated effect transmitted to each donor j. Third, the exposed weight mass
> jeN Wi which captures how much of the synthetic counterfactual relies on donors subject to
spillovers. This decomposition clarifies that contamination arises not from a complex interaction
of dynamics but from the mechanical way in which treated effects, diffusion intensity, and donor

weights combine.

Formally, let the treated unit be indexed by ¢ = 1 and donors by j € J. For a post-treatment

11



period t > Tp, the observed outcome for the treated unit is
Vi = Y14(0) + 7,

where Y1;(0) is the no-treatment potential outcome and 7; is the direct effect. For donors, we
allow localized, time-homogeneous diffusion with heterogeneous intensities: there is a subset

N C J such that, for j € N, the observed outcome is
ij?fbs = Y]t(o) =+ Pj Tt, Pj € [07 1]7 (3)

while for j ¢ N, Yj‘zbs =Y}+(0) (no spillover). This formulation isolates the spillover channel in a
transparent way: contamination is governed by three elements — the size of the treated effect 7,

the donor-specific diffusion intensities {p;}, and the weight mass assigned to exposed donors.

Define the SUTVA synthetic counterfactual (the path SCM would target absent interference)

as

Vi2(0) == > w; ¥;(0). (4)

JjeJ
Theorem 1 (Bias of SCM under localized spillovers). For t > Ty, the SCM estimator based on

observed donors satisfies

o= [YuO0) -Y50)] + n = m> pw . (5)
SUTVA synthetic mismatch direct effect JeN

contamination mass

In particular, if Y5€(0) = Y1,(0) (the SUTVA synthetic counterfactual coincides with the treated

unit’s no-treatment path at t), then

Fo= T — Ty pjw;. (6)

JEN

Proof. Starting from the definition of the SCM effect:

o= Y= w Y (7)
JjeET

For the treated unit, Yﬁbs = Y1:(0) + 7. For donors, Yﬁbs = Y (0) + pj7 if j € N, and

12



Yj‘;bs = Y;;(0) otherwise. Substituting, we obtain

Fo= [Y0l0) + 7] = [ D2 wi¥i0) + 7> pyu] (®)

JjeJ JEN
= [Y1(0) = Y5C(0)] + 7 — 7 Y pjwy, (9)
JEN
which establishes (19). The specialization (20) follows by setting Y;3¢(0) = Y3,(0). O

Equation (19) decomposes the estimator into three interpretable components: the SUTVA
synthetic mismatch Y3,(0)—Y;3€(0), the direct effect 7, and the contamination mass 7; > JeN PiW;
generated mechanically by assigning weight to exposed donors. The last term is the explicit bias
pathway introduced by interference; its magnitude depends on the effect size 7, donor-specific

diffusion intensities {p;}, and the weight mass on exposed donors.

The following corollaries illustrate the basic mechanics of this decomposition under the
simplifying condition Y3°(0) = Y71,(0) (perfect pre-treatment balance under SUTVA). They clarify
how the sign, magnitude, and bounds of the distortion follow directly from the contamination

mass.

Corollary 1 (Sign, attenuation, and scale). Suppose Y{3°(0) = Y14(0) and p; € [0,1] for all
j € N. Then:

1. (Sign/attenuation) If 3.y pjw; > 0 and 7 > 0, then 7y < 7y if Y-y pjwj > 0 and
¢ < 0, then 7y > 1. That is, positive weights on exposed donors attenuate estimated effects

toward zero.

2. (Monotonicity in exposure) Holding ¢ fived, |7y — 7¢| is nondecreasing in each p; and in the
exposed weight mass ZjeN wj. More intense or more widespread spillovers cannot reduce

bias.

3. (Bounds) Because 0 < p;j <1 and w € A, the distortion satisfies 0 < |7y — 7| < |m|. The
upper bound is attained only if the entire weight is placed on fully exposed donors (pj =1

for all j with w; > 0).

Proof. From (20), 7, — 11 = — 7 Z]EN pjw;. Because each p; > 0 and w; > 0, the sign of 7, — 7

is the opposite of the sign of 7, establishing (i). Statement (ii) follows since the absolute deviation

13



is proportional to > jen Pjw;, which is monotone in each p; and in exposed weights. For (iii),
note that 0 < EjeN pjw; < 1, which yields |7y — ;| < |7, with equality only under the stated

condition. n

These properties highlight that once exposed donors receive positive weight, bias is inevitable:
the estimator cannot cancel it. Moreover, the distortion grows monotonically in either the
intensity of exposure (p;) or the mass of weights placed on exposed donors. This makes clear

why interference in SCM is not a secondary nuisance but a direct and systematic channel of bias.
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Figure 1: SUTVA versus interference inside synthetic control. Each row illustrates how
donor contamination enters the synthetic counterfactual through the weights.

(a) No interference: donor outcomes are unaffected, so the synthetic predictor Y;3¢(0) =
> w;Yj:(0) is unbiased, and the estimated effect equals the direct effect 7.

(b) Monotone interference without reverberation: the treated effect diffuses smoothly to
nearby donors with intensity p;. If such donors receive positive weights, the synthetic predictor
embeds their spillovers, and the estimator obeys 74 = 7 — 7% Zje N PjWw;, so the estimate is
systematically shifted by the contamination mass 7 » | jen pjwj. This is the structured form of
interference addressed in this paper.

(c) Non-monotone interference with reverberation: spillovers propagate irregularly and
feed back through the network, generating heterogeneous donor exposures that need not decay
with distance. In this setting, the simple decomposition above does not apply without further
assumptions; such cases are beyond the scope of the present analysis.

This decomposition delivers a simple but powerful design principle: bias in SCM under
interference is governed by the exposed weight mass, so the estimator must be engineered to

suppress that mass while preserving pre-treatment fit and, when desired, the convex-combination
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interpretation that makes SCM transparent for applied work. Figure 1 illustrates this principle:
in the absence of interference, donor weights cleanly recover the counterfactual; under localized
spillovers, contamination flows directly into the estimate through exposed donors; and in more
pervasive diffusion settings, further assumptions would be required to disentangle direct from
indirect effects. The remainder of the paper operationalizes this principle by defining a continuous,
outcome-agnostic proximity score and incorporating it into rescaling and ridge adjustments that

systematically redirect weight away from high-risk donors.

3 Detecting Interference

Before constructing a synthetic control, it is useful to diagnose whether donor outcomes were
influenced by the treated unit’s intervention. Such influence constitutes interference and violates
SUTVA, which requires each unit’s potential outcomes to depend only on its own assignment and
not on the assignments of other units (Rubin, 1980). In comparative case studies, interference
could arise when a policy in the treated region diffuses to neighboring regions through geographic,
economic, or network linkages, thereby contaminating donors that should represent untreated
counterfactuals. The canonical Proposition 99 application of synthetic control (Abadie et al.,
2010) already hints at such risks (e.g., cross-border cigarette purchases or policy diffusion), and as
we demonstrated above, if spillovers are present, the synthetic counterfactual absorbs a fraction
of the treated effect, shifting the estimated treatment effect. In order to screen for this problem
ex ante, we develop a diagnostic coupled with randomization inference (Fisher, 1935; Rosenbaum,
2002), which is exact in finite samples and has been adapted to diagnose issues in experimental

designs (Bowers et al., 2017; Rosenbaum, 2007).

To formalize what we aim to detect, we write the joint potential-outcome vector at time t as

Yi(2) = (Yu(z),- - Yae(2))', 2= (2aseor2we) T € {0, 1}V,

so that interference is a property of how the assignment vector z co-determines all components of
Y:(z). We can then let S encode the spatial or network structure, and define for each unit ¢ an
exposure mapping F; = e;(z,S) summarizing the aspects of z (given the structure S) that are
relevant for i’s outcome at ¢t. Importantly, we focus in this paper on a locally dissipating manner

in which exposure will aggregates assignments with a kernel x over distance, but we impose a
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restriction over k so that it is nonincreasing:

N
Ey = Z K(dij;0) zjt, £(r) nonincreasing in r (10)

j=1
where d;; is the geographic (or network) distance between ¢ and j, and 6 collects kernel pa-
rameters. This accommodates heterogeneous patterns of diffusion while encoding the substantive

regularity that proximity increases exposure. We keep outcomes structural in exposure and do

not impose parametric functional form:

Yie(z) = Yiu(0) + Ait(Eit)7 (11)

so that all interference operates through Ej; as induced by (z, S) and the kernel .

The diagnostic we propose in the next sub-sections will target precisely whether post-versus-pre
changes in donor outcomes align with proximity in a way consistent with (10)-(11). In practice,
we take one of many potential routes and operationalize (-) by discretizing distance into a finite
number of rings around the treated unit and comparing outcome changes across near and far
groups of rings. Substantively, these rings discretize equal (or similar) exposure sets implied by
k: as donors in the same ring are approximated as having comparable exposure scores. We next
formalize this ring partition and the associated test statistic, and then implement a finite-sample
exact randomization test that evaluates whether the treated unit sits at the center of a distinctive

near-far pattern.

3.1 Distance-Based Ring Partition

We operationalize the exposure kernel x(-) by discretizing distance to the treated center p* into
K rings, approximating k(djy«; ) = sj, for all donors i assigned to ring k. Let the set of units
be U ={1,...,N}. One unit, denoted p* € U (typically p* = 1), is the actually treated unit
at time Tp. For each donor ¢ # p*, let d;,» denote the distance from i to p*. Choose radii
0=cy<c <--- < cg that partition the space around p* into K non-overlapping rings, and

assign each donor to a ring via

ripr =k <= cp—1 < dipr < gy k=1,....K.
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In practice, ring boundaries ¢ can be chosen by contiguity, by application-informed thresholds,
or to yield adequate sample sizes per ring. This construction serves as a discretization of equal-(or
similar-)exposure sets implied by the locally dissipating kernel: nearer rings correspond to larger
exposure scores. (An idealized symmetric geometry with concentric rings over a grid is depicted

in Appendix A.?)

We then define two disjoint donor groups by aggregating rings. Let R4 c {1,..., K}
denote a prorimal set (rings suspected to exhibit interference) and R® = {1,..., K} \ R” the

complementary distal set. The corresponding donor groups are
Ay ={i#p* :ripr € R}, By ={i#p* :rip- € RP}.

By construction, A, U B, includes all donors (excluding p itself) and A, N B, = (. Typically
we begin with R4 = {1} (the innermost ring) and R® = {2,..., K}, which is often the most

powerful single contrast for detecting any proximity-structured disturbance.

For the diagnostic to be informative, we emphasize the following design conditions as good-
practice and guidance for applied researchers:
Coverage: Both Ay« and By should be nonempty to permit near—far discrimination, note that
extremely small or empty rings undermine power and interpretability. In applications, set ¢
with domain knowledge to avoid vanishing cells while preserving a meaningful distance gradient.
Window-level common shocks: In the chosen pre/post window, there should not be global, unit-
invariant shocks that shift all rings equally (like a nationwide policy). Such shocks cancel in
expectations across rings and naturally erode any contrast. If present, adjust the window or
consider an alternative approach to the research problem.
Stability across windows: Ring membership should be stable across the pre and post segments

)

used to form ZZ.(w , so that near—far comparisons are not confounded by reclassification. In
practice, fix ¢ ex ante and verify that the composition of A,« and Bj,+ does not change when

varying windows within reasonable bounds.

Finally, in many applications, policy spillovers plausibly dissipate with distance, so far rings
act as a reasonable control group. But notice that if all donors are near (or all are far), or

interference is genuinely global, power is correspondingly limited.

2Appendix Figure A.1 illustrates the ring geometry (grid with concentric circles centered at p*) and the
mapping from continuous distance d;p+ to discretized exposure scores si = k(dip+;0).
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3.2 Outcome-Change Statistics

Having defined the groups, we now need a statistic that captures outcome changes potentially
caused by the treatment. Let T index time and T denote the intervention time for p*. For a

quost

chosen time window w, define disjoint sets T <, C T of equal length. For donor ¢, let

(w) _ § : o (w) E :
}/7, pre pre Yit, 1/i,post |Tpost Yit,
tETpre teTpost

and define the change statistic
7" =y v (12)

1,post i,pre

We consider several windows: a full window using all pre- vs. all post-intervention periods; a one-
period window using Ty — 1 vs. T+ 1; and symmetric n-period windows using {7y —n, ..., To—1}
vs. {To+1,...,To+n}. To avoid post-treatment leakage, windows w should be pre-specified using
domain/contextual knowledge, and while alternative windows may be reported for transparency,

ideally the researcher does not perform searches over those to select significance.

Note that ZZ»(w) is invariant to additive unit fixed effects over the window (as Yi; = a; + u;)
because naturally the pre/post difference cancels «;, focusing the contrast on within-unit shifts

(w)

plausibly induced by exposure. Under no interference, donors’ Z; "’ should not systematically

differ by proximity; with positive spillovers, proximal donors tend to have larger ZZ-(w) than distal

donors.

Aggregate by group:

Zw Z Zw Z
P el PV

For interpretability and variance scaling, we use a simple two-sample t-statistic?

)

2 _
N R [y | + [Byr| — 2
SP<|A*+\B>

w)

A positive value of t;*

Z5) -z ([Aps| = ) Var(ZZ) )+ (|Bpe| = 1) Var(2), )

indicates the near donors increased more on average than far donors

3When ring variances differ materially, researchers should also compute the Welch variant as a robustness
check, but notice that the subsequent permutation inference remains finite-sample exact under the null regardless
of the variance estimator used in the ¢-ratio’s denominator.
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(consistent with positive spillovers), whereas a negative value indicates the opposite pattern.
If SUTVA holds (no interference), tgf) should be close to zero, and a large |t§ff)| signals a

proximity-structured disturbance consistent with interference.

3.3 Randomization (Permutation) Inference

Classical large-sample approximations are unreliable with small donor pools. We therefore adopt
a design-based randomization test in the spirit of Fisher (1935), treating the identity of the

treated center as exchangeable under the null of no proximity-structured disturbance. Formally,
Hy : ZZ.(w)for 1 € U exhibits no special near-far pattern around p* relative to any p € U,

implying exchangeability of the center, which substantively means that the the patterns observed
nearby the treated unit are no different from the ones observed far from it. Under Hp, the
statistic computed around the actual treated unit should be typical of the distribution of the
same statistic computed when each unit is, counterfactually, taken as the center (that is, treated).
This allows us to construct the sampling distribution of |t1(;f)] under the null by considering other

units as placebo-treated. The algorithm is as follows:

Permutation procedure

1. For each p € U, treat p as if it were the treated center at time Ty. Form rings r;p, sets

Ap, Bp, and compute tz(,w) as in Section 3.2, yielding the set {tz(,w) :peU}.
2. Identify the treated unit p* and its statistic t;zf).

3. Compute the exact two-sided p-value

1+ #{peU: |5 2 18]}

(w)
P N+1

Including p* among the placebos yields a finite-sample exact permutation p-value under Hy
(Fisher, 1935; Rosenbaum, 2002). A small p®) indicates that the treated unit sits at the center
of an atypical near—far disturbance in outcomes, consistent with interference emanating from the

treatment location; a large p(*) suggests no detectable proximity pattern. 4

4This mirrors placebo-in-space in SCM (Abadie et al., 2010) insofar as the reference distribution is built by
re-centering the design at each unit. Here the statistic is a proximity contrast rather than an SC effect or loss.
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This randomization test effectively asks, “Is the treated unit the center of a unique outcome
disturbance that is not seen around other units?” If yes, it suggests the treated unit’s intervention
radiated outwards (affecting neighbors) in a way that other units (which had no intervention) did
not. On the other hand, if the treated unit’s tgf) is indistinguishable from many placebo t]()w)’s,
then there is no evidence that proximity to the treated mattered for outcomes. The test assumes
a single focal treated center drives any proximity pattern. Power is driven by coverage across

rings (Section 3.1) and by separation in the group means ZS? — Zgﬁ) over the chosen window.

3.4 Alternative Ring Contrasts and the Extent of Interference

The primary contrast R4 = {1} vs. R® = {2,..., K} asks whether any proximity-structured
interference is present and is typically the most powerful single test for any interference. If
detected, a natural next step, considering a locally dissipating pattern (monotone in distance in
expectation), is to examine how far from the treated center such disturbances remain detectable.
This asks: "how far spillovers extend?", and can be done considering a sequence of pooled or

adjacent contrasts,
Ring 2 vs. Rings 3+, Ring k vs. Ring k + 1, Ring k vs. Rings k +1,..., K,

recomputing tj(gw) and p(®) for each contrast. We then locate the smallest index kT such that the
contrast “Ring k' vs. Rings kf+1,..., K” is no longer statistically distinguishable. > Suppose a
researcher detects interference in the first ring, and proceeds to the ring 2 vs. rings 3+ contrast,
essentially treating the second ring as the “treated” and comparing it to the farther rings. If this
test is not significant, it suggests that by the second ring the detected interference has mostly

dissipated.

We interpret kT as the point beyond which, in the data, nearfar shifts in donor outcomes
are no longer detectable under the locally dissipating model. In practice, adjacent-ring tests
may be underpowered when rings are small, and pooling all rings beyond a boundary (e.g., k vs.
k+1,..., K) improves stability. A schematic illustrating these contrasts appears in Appendix A.7,
and the sequence of contrasts may be viewed as a something similar to the standard impulse

response function in time-series models, but here, this "spatial impulse-response" summarizes

5Because a boundary is identified by inspecting multiple related contrasts, one may report step-down multiplicity
adjustments alongside raw permutation p-values. A simple option is Holm’s step-down procedure (Holm, 1979). In
applications, adjusted p-values can be reported in the main text, with unadjusted values provided for transparency.
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the amplitude of the disturbance near the treated unit and its decay with distance.

The ability to detect a boundary kf (power of the test) improves with (i) larger expected
separation in group means ZS? — Zgﬁ) as distance increases; (ii) balanced ring sizes (or pooled
contrasts that mitigate small-cell noise); and (iii) longer, symmetric pre/post windows that
increase signal-to-noise while excluding t = Ty. Power is reduced by global shocks within the
window that shift all rings similarly and by mis-centered or coarse distance measures that blur

true proximity relations. These considerations complement the coverage and window design

guidance in Sections 3.1-3.2.

3.5 Decision Rule and Link to Bias Correction

The rings diagnostic yields a design-based decision rule for SCM. If the permutation test fails to
reject (ﬁ(w) large across pre-specified windows), proceed with standard SCM: there is no evidence
that proximity to the treated unit altered donor trajectories. If the test rejects (ﬁ(w) small for at
least one plausible window), treat SUT'VA as violated and proceed under the working conclusion

that donors in proximal rings received nonzero exposure.

In terms of the bias identity introduced earlier, rejection indicates positive exposed weight
mass (3 ey w; > 0 for donors N that are exposed) so the contamination term is activated and
the SCM estimand absorbs a nontrivial fraction of the treated effect. Subsequent estimators
should therefore target suppression of exposed weight mass while preserving pre-period fit and,
when desired, the convex-combination interpretation. The next sections implement this principle
via a continuous, outcome-agnostic proximity (reach) score (Section 4.1) and ridge-based variants

that downweight donors in proportion to their exposure risk (Section 5).

state 7@ gGeard)  gsymd) wate ¢ 4, 5,

Missouri ~ 4.0066  3.9159  3.9381 MO 44207  AR,IL,IN,... AL, AZ CA, ...

Towa 23640  2.4193  2.3539 VT  -02169 CT,DE, ME,... AL, AZ, CO, ...

Colorado  -0.0414  -0.1069  0.0060 CO 03428 AZ,MT,NV,... AL, CA,CT,...

Vermont ~ 0.02501  -0.1115  -0.0886 IA  -03312 ML MN,SD,... AL, AZ CA, ...
(a) Test statistics (b) Placebo donor sets

Table 1: Comparison of Z-statistics and placebo donor sets for selected states.

Table 1 summarizes, for a stylized U.S. states panel, unit-level change statistics across three
windows and the corresponding placebo-center contrasts. Missouri is treated at T with a direct

effect 7 = 4, and first-ring neighbors receive a spillover pr with p ~ 0.6, decaying with distance.
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(full) Z(year—l)
) 7 9

Panel (a) reports Z; Z§Sym-3)

and for selected states, and as expected under locally
dissipating interference, nearby donors to Missouri display large positive changes, whereas distant
donors are near zero. Panel (b) lists, for a few selected placebo centers p, the near-far t-statistic

t, and the membership of A, (proximal) and B, (distal) under the primary contrast R* = {1}
vs. RB ={2,...}.

Figure 2 visualizes the primary contrast for the treated center and three placebos. In each
panel, the treated center (or placebo center) is marked in red, the proximal set A, in orange,
and the distal set B, in green. For Missouri (Panel 2a), the near group exhibits a systematically

)

higher Zi(w) than the far group, yielding a large tz(:f . By contrast, Vermont, Colorado, and lowa
(Panels 2b—2d) produce tl()w) near zero with balanced near-far patterns, with the permutation
p-value small (p = 0.0408 for the window reported), indicating a distinctive proximity pattern

centered on Missouri. These displays make the decision rule concrete: when a unique near-far

disturbance is centered at the treated unit, proceed with interference-aware SCM that suppresses

Mo

exposed weight mass, otherwise, implement standard SCM.

N

(a) Contrast for Missouri (b) Contrast for Vermont

(c) Contrast for Colorado (d) Contrast for Towa

Figure 2: Contrasts across selected units.
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4 Rescaling

4.1 Spatial Reach

We model interference through a continuous, proximity-based exposure score. For each donor j,

let d(j,p) denote its distance to the treated unit p. The exposure score is

nj = f(d(j,p)) € (0,1),

where f is smooth and increasing in distance. We adopt the convention that larger n; indicates
lower exposure: very proximate donors have 7; near zero, distant donors have n; near one. This
score is used as an exposure mapping in the sense of the interference literature, which allows
outcomes to depend on other units’ assignments through low-dimensional summaries of the
assignment vector (Aronow & Samii, 2017; Hudgens & Halloran, 2008; Manski, 2013). The role
of n; here is purely exogenous: it summarizes the plausibility of spillover based on geography. It
is not a structural outcome model; rather, it is a measured feature of the design that we will feed

into estimation .

4.2 Rescaling Adjustment

The design goal is to reduce the contamination channel )  PiW; by discouraging large weights
on donors with low reach while preserving pre-treatment fit and, when desired, the convex-
combination interpretation. We operationalize this by folding the spatial reach into the synthetic-
control geometry. Let X; € RX denote the treated unit’s pre-treatment predictors and Xy =
(X 1,...,X j] € REXJ the donor matrix, where standard SCM selects w € Ay = {w > 0 :
1Tw = 1} to minimize Q(w; Xo) = || X1 — Xow||?,. We incorporate reach via the rescaled donor
matrix Xj = Xodiag(n) and solve the same convex problem with (X, X{¥), so that columns
associated with proximate donors are contracted in the metric used to match X;. This changes
only the feasible geometry: the optimizer still chooses a convex combination closest to X7, but
the combinations supported by high-risk donors are down-weighted and mixtures of safer donors

become comparatively more attractive for fit.

SMany smooth, monotone exposure mappings f(d) are admissible (e.g., logistic, Gompertz, kernel decays). For
transparency and outcome-agnostic design, we adopt a simple quantile-anchored specification calibrated from the
empirical distance distribution; full details and defaults are provided in Appendix A.5. Our results rely only on
the exogeneity and monotonicity of reach and are insensitive to smooth reparameterizations that preserve the
rank ordering of donors by proximity.
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In practice, whenever a combination of units farther from the treated unit can replace a donor
potentially more exposed to contamination (closer to the center), rescaling induces weights to
shift from the later to the mixture of safer donors. Theorem 6 below formalizes the consequence:
strictly dominated near donors drop from support, and aggregate mass on a more-exposed set, of
near donors does not increase. Since weights remain on the simplex, the convex-combination
interpretation is preserved and standard SCM diagnostics (pre-fit checks and placebo exercises)
remain comparable to the baseline. The link to bias is direct: the contamination term depends
explicitly on exposed weight mass, and rescaling reduces this mass by construction whenever the

donor pool permits coverage by safer combinations.

Implementation is outcome-agnostic and straightforward. Distances and the map n = f(d)
are fixed and calibrated once from d(j, p), and predictors are standardized across donors prior to
applying diag(n) so that the contraction acts on comparable magnitudes. With V' > 0 and 7;
bounded away from 0 and 1, the rescaled quadratic loss is strictly curved along feasible directions
on the simplex, so the rescaled problem keeps admitting a unique minimizer w* and responds
continuously to small perturbations. While these regularities are not central to the substantive

claim below, they guarantee allow the geometric comparison of supports to be made sharply.

From here, two design conditions link the rescaled geometry to exposed-mass reduction. The
first is a donor-wise coverage relation stating that some mixture of safer donors can stand in for
a given near donor once columns are contracted by reach. The second elevates this donor-level
dominance to a band of “more-exposed” donors, enabling an aggregate conclusion about the total

weight assigned to that band. Both are expressed below:

Assumption 1 (Strict dominance (coverage) by safer donors). For a donor m, there ezists a set
S with ng > Ny for all € € S and weights (™) € A\g| such that, writing Z(m) = Y es agm)X.f

and ng = mingcg 1y,

1X1 = 2y < 1X0 = Xonllv, X1 =052y < X0 = 0 X llv-

Assumption 1 expresses the replacement logic: before rescaling, the far-only combination
matches at least as well as m, and after rescaling, even a conservative scaling of that combination
is strictly closer than the scaled near donor. It is a property of the donor pool and the reach

map, not of outcomes post-treatment. Effectively, for a given unit near the treated, there is a
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combination of units farther away that can effectively replace it and, after rescaling, the loss for

this mixture of farther away units is strictly smaller than for the near unit.

Assumption 2 (Band-level dominance occurrence). Let N denote a “more-exposed” band (e.g.,

a reach-threshold set). At least one m € N satisfies Assumption 1 with S(m) C N€.

Assumption 2 is a mild coverage requirement at the group level. It does not require every
donor in NV to be dominated, merely that the band contains at least one dominated unit that can
be replaced by safer donors outside N when reach is taken into account. Therefore, with multiple

near units, Z(™ needs to be able to replace only one of these potentially contaminated units.

Theorem 2 (Support elimination and exposed-mass dominance under rescaling). Let w® minimize
1 X1 — Xow||3 over Ay, and let w* minimize || X1 — Xgw||3 over Ay, with X§ = Xo diag(n). If

donor m satisfies Assumption 1, then w;, — 0. If a band N satisfies Assumption 2, then

Sup < Yup

JEN JEN

with strict inequality whenever some dominated m € N has w,, > 0.

The logic of the theorem is fairly straightforward. By contracting near columns, rescaling
renders certain near donors strictly inferior to available mixtures of safer donors in the metric used
for fit. If such a dominated donor were to retain its original weight, an infinitesimal reallocation
toward its covering mixture (the combination of donors that could replace it) would strictly
reduce the objective while remaining feasible on the simplex, contradicting optimality. This
delivers donorwise support elimination. If we aggregate the same replacement argument over a
band, we can also conclude that the total mass on the more-exposed set cannot increase after
rescaling and must fall when the unrescaled SCM places positive weight on any dominated
near donor. The proof formalizes these steps using the KKT system and a feasible-direction

construction and is provided in Appendix A.2

This adjustment alters geometry without changing feasibility: weights remain nonnegative and
sum to one, and no post-treatment outcomes enter the construction. The next section develops a
complementary modification that acts directly on weight magnitudes conditional on reach, using
exposure-weighted ridge penalties to further suppress exposed mass while retaining convexity

and the convex-combination interpretation.
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5 Constrained Ridge Adjustment

The target remains the contamination channel identified earlier: post-treatment bias is transmitted
mechanically through the exposed weight mass assigned to plausibly affected donors. Under the
localized model with share p; € [0,1], the contamination at time ¢ > Ty is 7 3, wjp;. More
generally, with a nonnegative spillover d;; the bias equals By = ;Wj d;¢- The design objective

remains the same: reduce weight on likely exposed donors without sacrificing pre-treatment fit

or the interpretability of SCM as a convex combination of observed donors.

Rescaling (Section 4.1) achieves this by contracting predictor columns for high-risk donors
and is preferable when safer donors can geometrically cover the treated predictors once columns
are shrunk. Constrained ridge acts directly on the weights instead, preserving the original
predictor geometry while imposing an exposure-weighted /o penalty on large coordinates. In
practice, constrained ridge is the natural choice when (i) the ring diagnostic detects interference
among near donors, but (ii) rescaling materially degrades V-fit because very proximate donors
uniquely anchor certain predictors, or (iii) a smooth, more easily tunable shift of mass away from
high-risk donors is desired while retaining the convex-combination interpretation and standard
SCM diagnostics (Abadie & L’Hour, 2021; Abadie et al., 2010, 2015; Ben-Michael et al., 2021;
Doudchenko & Imbens, 2016).

Let X; € RX be the treated unit’s pre-treatment predictors, Xy = (X 1,...,X j] € REXJ the
donor matrix, and V' = diag(vi,...,vk) > 0. Retain the outcome-agnostic reach score n; € (0, 1)
from Section 4.1 (larger n; indicates lower exposure) and define a donor-specific penalty term

1j = g(n;) that increases as exposure risk rises. The constrained-ridge synthetic control solves

J
min Jy(w) = [| X1 — Xow|? + A w? st w>0, 1Tw=1, 13
i, B0 = 1= Yol + 435 > (13)

where A > 0 tunes the overall strength of penalization. When A = 0, (13) reduces to standard
SCM and, as A increases, large coordinates on higher-risk donors become more costly, inducing
a shift of mass toward safer donors. This design keeps the simplex constraints and preserves
the familiar convex-combination interpretation of weights, while importing the stabilizing and
bias-targeting features of regularization in SCM (Abadie & L’Hour, 2021; Ben-Michael et al.,
2021; Doudchenko & Imbens, 2016).

Three working assumptions (somewhat already implicit) help building the solution:
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Assumption 3 (Exposure-aligned penalties). The term v; = g(n;) is strictly decreasing on
(0,1): of donor m is more exposed than donor € (i.e., Ny < ng), then ¥, > 1y. For numerical

stability, 1; is bounded away from zero, inf;; > 1 > 0.

Assumption 3 is the design lever that translates spatial reach into the objective: nearer donors
(lower n;) face a larger marginal cost per unit of weight, so any reallocation that moves mass
from high- to low-v¢ coordinates is weakly preferred by the penalty term. Bounding ¢ away from

zero prevents nearly unpenalized coordinates that would defeat regularization.

Assumption 4 (Strict convexity and well-posedness). A > 0. Then the Hessian Hy = 2X, V Xo+
2\ diag(e1, . ..,vy) is positive definite, so the program (13) with w > 0 and 1Tw = 1 admits

)

a unique minimizer w\Y, and the Karush-Kuhn—Tucker (KKT) conditions are necessary and

sufficient (see Boyd € Vandenberghe, 2004).

Assumption 4 plays no substantive role beyond guaranteeing a unique solution characterized
by first-order conditions, and it ensures that any feasible descent direction contradicts optimality.

This will be the device used to compare exposed mass across designs.

Assumption 5 (First-order coverage by safer donors). Let N denote a “more-exposed” band
(e.g., a low-reach threshold set) and S = N€ its complement. For each m € N there exists
alm e Ajs) and Zm) — Y res aém)X,,g such that, at the constrained-ridge solution w™ with

residual r™ := Xow® — X7,
rNTy (2 - X ,,) <o, (14)

and for at least one m € N the inequality is strict.

Assumption 5 is the weight-penalized analogue of the coverage used for rescaling: it encodes
that the donor pool contains informative far units capable of absorbing mass without harming
pre-period fit at first order. With these elements in place, we can compare the exposed weight

mass under A = 0 and under A > 0.

Theorem 3 (Exposed-mass dominance under constrained ridge). Let w(®) solve mingen , || X1 —

Xow||? and let w™) solve (13) with A\ > 0. Under Assumptions 34,

Z w® < Z w0, (15)



If Assumption 5 holds with strict inequality (14) for at least one m € N, then

Z w < Z w0, (16)
meN meN
The proof proceeds by a first-order comparison at the constrained-ridge optimum, where
Assumptions 4- 5 ensures that, as 1, > 1y, the ridge term prefers the reallocation of weight
mass from the near unit toward the safer convex mixture of farther donors. Appendix A.3
provides the full guided proof for Theorem 7, implementing the feasible-direction construction
and demonstrating that any result with a larger exposed mass would contradict optimality.

Theorem 7 translates into bias attenuation under the contamination models considered

earlier. Under the localized p; € [0,1], the decomposition in Section 2 gives E{%t(’\)] -7 =

—PTt D meN wg‘), SO D N w%) <D omenN w,(,?) implies \E[?t(’\)] — 7| < ]E[%t(o)] — 7¢|. Therefore,

for any spillover term d;; aligned with the exposure risk the same mass shift yields
B = 3w o < Y w e = B,
J J

Entailing a reduction in the contamination mass, when compared to the baseline application of

SCM in a scenario where interference is present.

Parameter tuning follows the pre-period-only, selecting A by cross-validation on pre-treatment
block, in line with practice for synthetic control and its regularized variants (Abadie & L’Hour,
2021; Abadie et al., 2010; Ben-Michael et al., 2021; Doudchenko & Imbens, 2016). Report the
schedule g(+), the tuning grid and selected A, and pre-period fit diagnostics at A = 0 and at the
chosen A. Mechanically, the adjustment preserves the convex-combination interpretation while
inducing a continuous reallocation of mass away from high-v coordinates. Because the penalty
multiplier is monotone in exposure, the adjustment acts exactly on the pathway that transmits

bias in the post-period.

The constrained ridge thus provides a convex, on-simplex adjustment that directly targets
exposed mass via an exposure-aligned penalty. The next section considers an unconstrained ridge
variant that relaxes the simplex, allowing negative and non-summing weights to further damp

exposure at the cost of sacrificing the convex-combination interpretation.
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6 Unconstrained Ridge Adjustment

The constrained ridge in Section 5 preserves the simplex so that the synthetic remains a convex
combination of donors while targeting the exposed-weight channel. We now consider an alternative
that relaxes the simplex entirely and estimates weights in R’ by exposure-weighted penalized
least squares. Allowing real (including negative) weights and dropping the sum-to-one restriction
increases flexibility in two ways directly relevant under interference: it enables active cancellation
of contaminated donors through negative coefficients and free scaling of the synthetic control

when the best linear approximation requires a level shift.

This connects to established regularized and augmented SC formulations that move beyond
convex weighting (Abadie & L’Hour, 2021; Ben-Michael et al., 2021; Doudchenko & Imbens,
2016). The particular contribution here is to calibrate regularization by spatial reach (Section 4.1)
so that shrinkage is strongest where spillovers are most plausible. In practice, we switch from
constrained to unconstrained ridge when the ring diagnostic indicates strong local interference
and either (i) suppressing mass on near donors within the simplex materially degrades pre-period
fit, (ii) modest negative weights would counteract residual contamination, or (iii) an overall level

shift improves fit. The major cost is, naturally, the loss of convex-combination interpretability.

Fix the same notation as before: X; € RX collects the treated unit’s pre-treatment predictors,
Xo=[X1,...,X ] € REX the donor predictors, and V = diag(vy, ..., vk) = 0 the importance
matrix. Let n; € (0,1) be the outcome-agnostic exposure scores (larger n; indicates lower
exposure), and define the penalty schedule 1); = g(n;) with g strictly decreasing and bounded away
from {0,1} (for concreteness, g(n) =1 —n). Write Dy, = diag(t1,...,%s). The unconstrained

ridge estimator solves
wB(N) € arg min [|X1 — Xowll} + D/ *wl3, A0, (17)
weRY
with closed form
wUB(X) = (XgVXo+ADy) ' XJVXi (A>0). (18)

For this we are relaxing the simplex constraints used before w >0, 1"w = 1. Therefore, the
pre-period objective is unchanged relative to SCM and constrained ridge, only the feasible set
differs (weights may be negative and need not sum to one). As in standard SCM operation,

post-treatment prediction proceeds by applying the same wY#(\) to donor outcomes, so the bias
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channel continues to operate through the weights as in Theorem 5.

In terms of assumptions, we retain the same design primitives as in Section 5: an exogenous
reach map and an exposure-aligned penalty schedule ¢; = g(n;) that is strictly decreasing and
bounded away from zero, and A > 0 for well-posedness (so XJ VXo + AD, = 0 and (18) is
the unique minimizer). No new structural conditions are introduced and, when compared to
constrained ridge, we relax the simplex and nonnegativity constraints. The result below builds
on these primitives and shows how exposure-weighted ridge delivers a tuning-monotone envelope

for the contamination term.

Theorem 4 (Exposure-weighted unconstrained ridge: bias envelope and tuning monotonicity).
Let wYE()\) solve (17) with A > 0 under the exposure-aligned schedule in Assumption 3. For any

exposed set N # () with QN = minjen ¥; > 0,

> wlR)| < VINTERY2 Dy 2u R0,

JEN

and the map X\ — ]|D11/2wUR()\)||2 is nonincreasing with limy_, s ||D11/2wUR(/\)H2 = 0. Conse-

quently, under the localized, time-homogeneous model of Section 2 (Theorem 5),

RO = 7| < plml VIN w2 | DY wV B,

and, more generally, for any nonnegative exposure-aligned profile {0¢} with V¥ > Vg = Ot > dut,
_ 1/2
Dol N b < lowllz v Dy P e ),
J

Hence the right-hand side is nonincreasing in A and vanishes as A — 00.

The proof can be consulted in Appendix A.4, and it is organized in three subparts: (i)
an exposed-sum bound via Cauchy—Schwarz and the 1 n horm equivalence; (ii) ridge-path
monotonicity of ||D11/2wUR()\)||2 by comparing the objective at two tuning values; and (iii)
translation to bias envelopes under the localized and exposure-aligned spillover models.

The intuition is twofold. First, without the simplex we cannot compare exposed mass, and
then instead we control the exposed sum by an exposure-weighted f» norm. In other words,

highly exposed donors carry larger v; and therefore contribute more to the penalized norm, so

shrinking this norm uniformly in A forces the aggregate exposed contribution to shrink. Second,
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along the ridge path the exposure, so the bound tightens deterministically as tuning increases
and collapses to zero as A — co. Negative weights are admissible, which enables a more agressive
cancellation of contaminated donors. The envelope applies to the absolute exposed sum, ensuring
that any partial cancellations are captured while still delivering a tuning-monotone control of

the contamination term from Theorem 5.

Mechanically, the estimator replaces the simplex projection with a penalized least-squares
projection in R7. The exposure-weighted ridge term shrinks coordinates in proportion to
¥ = g(n;), so high-risk donors are damped more aggressively, while negative coefficients are
admissible and can offset contaminated donors. Dropping 17w = 1 permits level shifts in the
synthetic predictor when the best linear approximation is not anchored at the convex hull of
donors. The price of this flexibility is, as mentioned, loss of the convex-combination interpretation
(Ben-Michael et al., 2021; Doudchenko & Imbens, 2016; Hastie et al., 2009; Hoerl & Kennard,
1970).

In summary, the unconstrained ridge retains the design-based discipline (pre-period tuning;
outcome-agnostic reach) while relaxing the simplex to permit negative weights and level shifts.
The exposure-weighted penalty yields a tuning-monotone envelope for the contamination term
(Theorem 8), providing direct control of the bias pathway identified earlier. We next turn to
simulations and applications to quantify the empirical trade-offs between rescaling, constrained

ridge, and unconstrained ridge in settings with and without interference.

7 Simulation Evidence

We assess the behavior of the proposed corrections in a spatial simulation calibrated to the
contiguous United States. The population consists of the contiguous 48 states with Missouri
as the treated unit, and treatment begins at time Ty in a panel of length T = 30. Exposed
neighbors are defined geographically: first—order contiguity determines the set of units at positive
interference risk, and the contamination radius is taken to be the maximum inter—centroid
distance among these first—order neighbors, and units within this radius form the exposure set.
In the pre—treatment period each unit follows a stable additive data—generating process with
a unit effect, independent standard—normal covariates, and idiosyncratic noise; we also include

one lag of the outcome in the predictor set used by SCM. After T, the treated unit receives a
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constant direct effect 7, while exposed neighbors receive a homogeneous spillover p7; all other
units evolve as before. Hence 7 indexes the magnitude of the causal effect and p € [0, 1] the

share that diffuses to neighbors.

We compare four estimators: (i) conventional SCM (no correction), (ii) covariate rescaling
based on the spatial reach score introduced in Section 4.1, (iii) constrained ridge (nonnegativity
and sum-to—one retained) from Section 5, and (iv) an unconstrained ridge variant that removes

the simplex restrictions while keeping the same exposure-weighted penalty.

For all methods, predictors are standardized across donors and exposure scores are calibrated
exactly as in Section 4.1 with the same logistic map and tail anchoring; the penalty schedule
uses g(n) =1 —n, bounded away from 0 and 1 for numerical stability. Tuning parameters for
ridge methods are chosen exclusively from pre—treatment data via rolling—fold cross—validation:
for each candidate A, weights are estimated on a training slice of the pre—period and validated
on the remaining pre—period, and the A minimizing validation error is selected. This avoids
outcome—dependent tuning and follows best practice for SCM and its regularized variants (e.g.,
Abadie & L’Hour, 2021; Abadie et al., 2010; Ben-Michael et al., 2021; Doudchenko & Imbens,
2016).

To summarize performance we report, for each method, the distribution of the post—treatment
average treatment effect estimate ATT across simulations and its continuous ranked probability
score (CRPS) relative to the degenerate distribution at the true 7 (Gneiting & Raftery, 2007).
Smaller CRPS indicates that the empirical distribution of ATT concentrates more tightly around
the truth. We R = 1,000 replications for each parameter pair on the grid 7 € {1,4,7} and
p € {0.1,0.3,0.6,0.9,1}; the figure below displays the representative case (7, p) = (4,0.6), but

the results are consistent across all specifications.

The pattern mirrors the bias channel in Theorem 5. Uncorrected SCM assigns nontrivial mass
to exposed neighbors, so its ATT distribution is shifted downward when 7 > 0 (attenuation)
and exhibits a relatively large CRPS. Constrained ridge preserves the simplex and shrinks
high-risk donors but, because it must reallocate mass within the simplex, the exposed share is
only partially reduced; the distribution moves slightly toward the truth and CRPS improves
marginally. Covariate rescaling alters the geometry of the fit so that near donors are harder
to use; weight reallocates into less—exposed donors, leading to an ATT concentrated around 7

and a sharp CRPS improvement. The unconstrained ridge, by permitting negative weights and
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Constrained Ridge SCM Rescaled SCM Unconstrained Ridge SCM
— True ATT (4)

S S S Uncorrected SCM
ATT = 3.54; CRPS =0.23

Constrained Ridge SCM
ATT = 3.55; CRPS = 0.25

F(ATT)

Rescaled SCM
ATT = 3.95; CRPS = 0.06

Unconstrained Ridge SCM
ATT =4.01; CRPS = 0.03
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Figure 3: Distribution functions of ATT at 7 = 4, p = 0.6. The vertical step line marks the true effect. Gray:
uncorrected SCM (ATT = 3.54, CRPS = 0.23); red: constrained ridge (ATT = 3.55, CRPS = 0.25); green: rescaled SCM
(ATT = 3.95, CRPS = 0.06); orange: unconstrained ridge (ATT = 4.01, CRPS = 0.03).

dropping the sum—to—one restriction while penalizing exposure, can actively offset contaminated

donors and freely scale the synthetic predictor; in this design it exhibits the tightest concentration

around 7 and the smallest CRPS.

Across the full grid of (7, p), these relative orderings persist: both reach—based corrections
substantially reduce bias relative to uncorrected SCM, and the unconstrained variant typically
delivers the strongest attenuation of contamination (at a cost in interpretability that we discuss

in the next section).

8 Replications

We now apply the framework—diagnostics and corrections—to four influential applications in
which synthetic control is the primary design. For each case we first probe for interference using
the ring-based randomization test from Section 3; distances are great-circle distances between
unit centroids and we examine several ring definitions and all pre/post windows. We then discuss
coverage, i.e., whether the donor pool spans near, mid, and far units relative to the treated
unit, which is critical for diagnosing SUTVA and for learning whether spillovers are plausibly
localized. Finally, in a setting where richer coverage is attainable, we re-estimate the design with

an expanded donor pool and implement the bias-correction tools developed above.

The four studies are: Abadie and Gardeazabal (2003) on the economic impact of the Basque
Country conflict (Spanish provinces as donors), Ben-Michael et al. (2021) on the Kansas 2012 tax

cuts (U.S. states), Abadie et al. (2015) on the economic consequences of German reunification
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(OECD countries), and Kikuta (2020) on civil war and deforestation in the Democratic Republic
of the Congo (cross-national donors). Following each study’s original construction (predictors,
pre/post split, and weighting metric V'), we run our proximity diagnostic. In these original data
sets, we do not detect interference at conventional levels. As observed in the image below, the
permutation p-values are 0.22 (Basque), 0.18 (Kansas), 0.46 (German reunification), and 0.33
(DRC).

(a) Abadie et al (2003) Conflict in the Basque (b) Ben-Michael et al (2021) Kansas tax cut
p=0.22 p=0.18

(c) Abadie et al (2015) German Reunification (d) Kikuta (2020); Civil war and deforestation
p = 0.46 p=0.33

Figure 4: Prominent synthetic control applications.

The absence of detected interference in the original designs should not be interpreted as
evidence that SUTVA necessarily holds; rather, it highlights a potential design limitation.
Detecting a proximity pattern requires coverage: a donor pool with meaningful variation in
distance—near, mid, and far units—so that the diagnostic can compare rings. When the donor
pool is geographically scattered or concentrated in a single band, the design cannot reveal whether
neighbors behave differently from far-away units, and any inference must effectively assume away
spillovers. In our four cases, the Basque and Kansas designs pool donors from the same national

space and exhibit good coverage; by contrast, the German reunification and DRC designs use thin,
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hand-curated international donor sets with limited spatial structure, which constrains diagnostic

learning about SUTVA.

Application Coverage Interference
Abadie et al (2003) v X
Ben-Michael et al (2021) v X
Abadie et al (2015) X X
Kikuta (2019) X X
Expanded German Reunification v v

Table 2: Coverage and interference in selected synthetic control applications.

To demonstrate how coverage changes what we can learn, we revisit Abadie et al. (2015)
and expand the donor pool to all countries with complete data on the authors’ predictors and
outcome (roughly 150 countries), maintaining their pre/post periodization and predictor set.
With this richer and geographically diverse pool, the ring diagnostic now flags a clear proximity
pattern around West Germany; the permutation p-value drops from 0.46 in the original OECD

sample to 0.016 in the expanded sample, indicating statistically detectable spillovers.

(a) Abadie et al (2015) German Reunification, (b) Expanded German Reunification,
p=0.46 p=0.016

Figure 5: German reunification: original versus expanded donor pools. Expanded coverage
reveals a proximity pattern consistent with interference.

Motivated by the diagnostic, we apply the three corrections to the expanded German case:
covariate rescaling (Section 4.1), constrained ridge (Section 5), and unconstrained ridge (Section 6).
All tuning is performed on the pre-treatment period only (rolling folds), the exposure map uses
distances between centroids with the same calibration as in Section 4.1, and we follow Abadie
et al. (2015) for outcomes, predictors, and V. Table 3 reports the average treatment effect on

the treated (ATT) and pre-treatment RMSE.
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Table 3: German reunification (expanded donor pool): estimates and pre-treatment fit

Specification ATT Pre-RMSE

Baseline SC (authors’ design) —1549.9 119.08
Rescaled SC (covariate reach) —1601.5 279.03
Constrained ridge (simplex) —1103.4 80.43
Unconstrained ridge 136.1 59.5

Three patterns are worth underscoring. First, the expanded design with demonstrable coverage
changes the question we can answer: once near, mid, and far donors are all represented, the
diagnostic can credibly adjudicate SUTVA, and here it points to spillovers (p = 0.016). Second,
the corrections materially affect inference in directions consistent with their geometry. Covariate
rescaling preserves the simplex and moves the feasible synthetic profiles away from proximate
donors, magnifying the negative effect relative to baseline but worsening pre-fit as the geometry
tightens. Constrained ridge keeps convex weights but penalizes exposed donors, attenuating the
magnitude while improving pre-fit. Unconstrained ridge relaxes the simplex and allows active
cancellation (negative or non-summing weights), delivering the closest pre-treatment fit and, in
this case, a sign reversal. Third, the trade-off highlighted in Sections 4.1-5 is visible empirically:
the most flexible reweighting yields the largest bias reduction when interference is present but
sacrifices the simple convex-combination interpretation emphasized in the classic SC paradigm

(Abadie & L’Hour, 2021; Ben-Michael et al., 2021; Doudchenko & Imbens, 2016).

Taken together, these replications show how the proposed workflow operates end to end.
Coverage is a prerequisite for learning about interference; with adequate coverage, the ring
diagnostic can flag spillovers; and when interference is detected, proximity-aware corrections that
act directly on the weights can substantially change the substantive conclusions, often improving
pre-treatment fit and reducing the contamination channel identified in Theorem 5. In settings
where donor pools are discretionary or thin, expanding coverage is itself a design improvement

that enables credible diagnostics and targeted bias correction.

9 Conclusion

SUTVA is indispensable for causal inference designs, and it is particularly consequential for
Synthetic Control methods because post-treatment donor outcomes enter the counterfactual

directly. We formalized this channel via a bias decomposition in which contamination operates
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through the exposed weight share: the estimator differs from the target by a term proportional to
> ; PjW;- This channel is mechanical: once positively weighted donors are exposed, bias follows,

and it motivates both diagnosis and design modifications that act on the SCM weights.

We proposed a design-based diagnostic that tests for proximity-patterned outcome changes
around the treated unit using ring partitions and Fisherian randomization inference. The test
is exact in finite samples under the sharp null and offers a pre-analysis decision rule: proceed
with standard SC when proximity patterns are not detected; otherwise, treat SUTVA as violated
and modify the design. The diagnostic requires coverage across distance rings, as without

near—mid—far donors, power is limited and SUTVA violations cannot be properly assessed.

We then introduced three interference-aware adjustments that incorporate an exogenous
exposure map into SC while tuning only on pre-period data. Cowvariate rescaling contracts
high-risk donor columns, leaving weights on the simplex under a mild coverage condition, the
exposed mass cannot increase. Constrained ridge preserves the convex-combination interpretation
but adds an exposure-aligned /5 penalty; KKT geometry implies bandwise dominance, so total
weight on exposed donors weakly (and often strictly) falls. Unconstrained ridge relaxes the
simplex, allows negative weights and level shifts, and penalizes via an exposure-weighted norm;
a simple Cauchy—Schwarz argument and ridge-path monotonicity deliver a tuning-monotone

envelope for the contamination term.

Simulations calibrated to U.S. geography corroborate these mechanisms. Baseline SC exhibits
attenuation when spillovers are present, constrained ridge modestly improves performance,
covariate rescaling materially reduces bias, and unconstrained ridge typically achieves the tightest
concentration around the true effect (smallest CRPS) by enabling active cancellation while

controlling a penalized norm. These patterns persist across effect sizes and diffusion intensities.

Replications illustrate the workflow. Applied to Abadie and Gardeazabal (2003), Ben-Michael
et al. (2021), Abadie et al. (2015), and Kikuta (2020), the ring diagnostic does not reject at
conventional levels, consistent with either SUTVA or insufficient coverage. Expanding the Abadie
et al. (2015) design to a broad, data-complete donor pool yields clear coverage and a detected
proximity pattern. The corrections then materially change the estimate in directions consistent
with their geometry, with unconstrained ridge delivering the closest pre-period fit and the largest

attenuation of the contamination channel.

Practically, we recommend: (i) ensure coverage; (ii) run the ring diagnostic; (iii) if interference
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is detected, start with rescaling; (iv) use constrained ridge when simplex interpretability is
important but some mass reallocation is feasible; (v) deploy unconstrained ridge when residual

exposure persists and modest negative weights can cancel contamination without harming pre-fit.

Two qualifications delimit scope. Diagnostic power depends on coverage, and design guarantees
rely on an exogenous exposure map aligned with actual spillovers. These considerations suggest
extensions: constructing reach with auxiliary mobility or trade data under monotonicity con-
straints and sensitivity to alignment. Overall, the contribution is to recast interference handling
in SC as a geometric design problem with explicit diagnostics and interference-aware estimators,

preserving the transparency of SC while mitigating its first-order vulnerability to spillovers.
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A.1 Theorem 1 Proof

Theorem 5 (Bias of SCM under localized spillovers). Fort > Ty, the SCM estimator based on

observed donors satisfies

7= [Yu@0)-Y5°0)] + n - mY puw (19)
SUTVA synthetic mismatch direct effect JeN

—_——

contamination mass

In particular, if Y55€(0) = Y14(0), then

’f‘t = T+ — thpj’wj. (20)
JEN

Local setup for Thm. 5).
(A1) Time index: fix a post-treatment period ¢ > Tp.
(A2) Weights: w = (wj)jes with w; > 0and 3 ;. ;w; = 1.

(A3) Interference set: N C J (donors exposed to spillovers in post-periods). For j ¢ N,
Y =Y (0).

(A4) Diffusion intensities: (p;)jen with p; € [0, 1], time-homogeneous; for j € N, Yj‘;bs =
Yji(0) + pj 73
(A5) Treated unit: YlotbS = Y1:(0) + 7.

(A6) SUTVA synthetic target (no-interference counterfactual): Y5¢(0) := > jer wj Yji(0).
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Proof.

Estimator definition:

obs obs
§ JYJt

JjeJ

|definition of SCM post-period effect].
Substitute the treated unit’s observed outcome

7A't = (Ylt + Tt Z Wy YObS
jeTJ

[by (A5)].
Partition donors into exposed and unexposed

#o= (Yu0) +7) — D w Y — Y w v
JeN JET\N

[split sum over J = N U (J \ N)].

Substitute donors’ observed outcomes by exposure status

o= (Yu0) +7) — Y w (Yie(0)+pm) — Y w; Vi (0)

JEN JEJ\N

[by (A3)-(A4)].

Distribute weights and separate terms

7 = (Yie(0) + 1) ij 5t(0) — thpjwj - Z w; Yji(0)

jJEN JEN JjeI\N
[linearity of sum].

Re-aggregate baseline donor outcomes

T = (Yu +Tt Zw] 5(0) — TtZijj

JjeJ jJEN

[combine the two baseline sums].

Introduce Y;;¢(0) and rearrange

¢ = (Yu(0) = Y5°0) + 7 — n > jen PjW;

[by (AG)].
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Conclude the decomposition

A SC
o= (Y0 -Y5°0) + n - mY puw
SUTVA synthetic mismatch direct effect N jeN ,

contamination mass

[this is (19)].
Special case Y3¢(0) = Y1,(0)

t = Tt — Tt Zjeijwj

[set mismatch term to zero; obtain (20)].
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Corollary 2 (Sign, attenuation, and scale). Suppose Y3°(0) = Y1,(0) and p; € [0,1] for all
j € N. Then:

1. (Sign/attenuation) If 3.y pjw; > 0 and 7 > 0, then 7y < 7y if Y-y pjwj > 0 and
™ <0, then T4 > T¢.

2. (Monotonicity in exposure) Holding T fized, |7 — 7| is nondecreasing in each p; and in
ZjeN Wy .

3. (Bounds) 0 < |7, — 1| < |7, with the upper bound only if all positive weight is on fully
exposed donors.

Proof.

Start from the special case
T —T = —Tthjwj
JEN
by (20)]
Sign
sign(7; — 1) = — sign(ry) whenever Z pjw; >0
JEN

[since pj, w; > 0.

Hence, if 74 > 0 then 74 < 73; if 7 < 0 then 74 > 7 (part (i)).

Monotonicity
Fe—mil = Il D pjw;
JEN
[from Step 1 and nonnegativity].
0
— | =7 = |lw; >0
B0, 7t — 7| = |m|w; >

[componentwise monotonicity in each p;|.

If total exposed mass increases (holding p fixed), Z w; increases, so |7;—¢| increases (part (ii)).

JEN
Bounds
0< D pjwj €3 1wy < wy =1
JEN JEN JjeT
[since p; € [0,1] and w € A|.
0 < r—ml = Inl- D pjuw; < |7l
JEN

[multiply by |7¢]].

Equality at the upper bound requires Z pjw; =1,
JEN

i.e., all positive weight lies on donors with p; = 1 (part (iii)).
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A.2 Theorem 2 Proof

Theorem 6 (Support elimination and exposed-mass dominance under rescaling). Let w® minimize
X1 — Xow||3 over Ay, and let w* minimize || X1 — Xgw||3 over Ay, with X§ = Xo diag(n). If
donor m satisfies Assumption 1, then w;, — 0. If a band N satisfies Assumption 2, then

* o
dowp < ) b,
jEN JEN

with strict inequality whenever some dominated m € N has w,, > 0.

Local setup for Thm. 6.

Fix V = diag(vi,...,vk) > 0.

Let X3 € RE, Xo = [X 1,..., X j] e RF*/ and Ay = {w e RLy: 1Tw =1}

Let n = (m1,...,n)" with n; € (0,1), and define X := X diag(n).

Define Q(w; Xo) := | X1 — Xow|} = (X1 — Xow) "V (X1 — Xow).

Let w°® € argmingea , Q(w; Xo) and w* € arg mingen , Q(w; X{).

Assume strict convexity along feasible directions: dTXa‘TVXa‘ d>0foralld+#0with1'd=0.

Assumptions 1 and 2 are as given in the main text.

Summary of what each component does

e Part A makes explicit where the quadratic form w' H*w — 2b*Tw + X{ V X7 comes from
and why H* is the Hessian.

e Part B states KKT and the exact role we use: identifying feasible descent directions
contradicts optimality.

e Part C proves donor-level support elimination via a concrete feasible direction built from
Assumption 1.

e Part D lifts this to band-level mass via an explicit finite sequence of mass-reducing descent
steps and optimality.
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Proof.

A. Quadratic expansion and curvature

Qw; X5) = (X1 — Xgw) V(X1 — Xjw)
[definition of @ with X{].
Qw; X3) = X{VXy — 2X3"'VX)Tw + w' XFTVXiw
lexpand the quadratic form].
Qw; X3) = X{ VX, — 20" Tw + w' H*w
[define b* := X3V Xy, H* := X} VX
VuQ(w; X5) = —2b" + 2H*w
[differentiate the quadratic in w].
VaQ(w; X5) = 2H"
[constant Hessian].
d"V2Q(w; X3)d = 2d"H*d = 2d"X;TVXid > 0 Yd#0,17d=0

[strict convexity on the tangent space].

d"V2Q(w; X)d = 2d"H*d = 2d' X;"VXid > 0 Yd#0, 1Td=0
[strict convexity on the tangent space].

Therefore the constrained problem on A; has a unique minimizer w*

[standard result: strict convexity + convex feasible set].
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B. Lagrangian and KKT

Lw, A p) = Qw; Xg) — A1 w—1) — plw
[introduce Lagrangian: one equality, J nonnegativity constraints|.
Vol(w, A\ p) = 2H w — 20" — A1 — p

[gradient in w via Part A].

2H*w* —2b* — X\*1 — pu* =0, |[stationarity]
1Tw* =1, w* >0, [primal feasibility]
KKT at (w*, \*, u*):
w* >0, [dual feasibility]|
piwi =0 Vi [complementary slackness]

(i) If w; >0, then (2H*w* —2b*); = \*.
Role of KKT we will use:
(ii) If w; = 0, then (2H*w™ —2b%); > A*.

[from yj = 0 when w} > 0; p; > 0 otherwise].

C. Donor-level support elimination under strict dominance.

Fix a donor m that satisfies Assumption 1.

zm = Zagm)X,,e, ns = rzréiélm
Les

[notation from Assumption 1.
IX1 =20y < 1 X1 = X mllv
[Assumption 1, first inequality (unrescaled match no worse).]
1X1 = s 2"l < 1X1 = Xl

[Assumption 1, second (strictly better after rescaling).]
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Lemma C.1 (directional improvement from m to S).

Define d € R? by dy, := —1, dg:= ai™ (£ € §), d; := 0 otherwise.

17d = —1—|—Zagm) =0
tes

[feasible (tangent) direction; o™ € Agl-

Xod = > o™ m Xy = tnXom
lesS

lapply X§ = X diag(n) to d].

d
For any z € RY, iLonXl —(z+ e} = —2(X1—2) Vu

[directional derivative of a quadratic].
Set z := Xgw*, u:= X3d. Then V,Q(w*; X)) d = 2(Xiw* — X1) 'V (Xzd)
[chain rule].

Wiite X5d = (952" — 0y X.m) + > af™ (e — 15) X ¢
les

us

~~

rs

[add and subtract ngZ™)].

1X1 = nsZ™ |y < 1 X1 =X mlly = (X1 = mX.m) Vug > 0
[strict descent toward ngZ™) in V-metric|.

(X1 — X§w*) " Vug = (X1 — X m) Vs + (X m — Xgw*) Vg

l[add and subtract 7, X ]
If wy, > 0, the stationarity/KKT alignment implies (1, X ., — Xa‘w*)TVus >0

[coordinates with w} > 0 share equal gradient; ug redistributes mass away from m|.

Hence (X1 — Xjw*) Vug > 0
[strictly positive inner product].

(X1 — Xw*)'Vrg > 0

[each term uses (¢ — ng) > 0 and convexity alignment; see note below].

= (X; - Xjw")V(Xid) > 0
[sum of two nonnegative terms with the first strictly positive].

= VoQ*; X)) Td = 2(Xiw* — X1)TV(Xid) < 0

[sign flip].

Therefore, if w;,, > 0, there exists a feasible descent direction d (contradiction) H
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Note on (X1 — Xjw*) Vrg > 0:
Each summand moves mass from m to safer £ € S with ny > ng, and by KKT, coordinates with
smaller scaled columns cannot have strictly smaller gradient than active ones. This ensures no

negative contribution from rg.

Conclusion of donor-level down-weighting/elimination:
If m satisfies Assumption 1, then w}, — 0 [by Lemma C.1 and the KKT no-descent condition at

w*].

D. Band-level exposed-mass dominance (aggregate inequality).

Assume N satisfies Assumption 2: there exists m € N strictly dominated by S(m) C N°€.

Lemma D.1 (mass-reducing descent from any w with wy, > 0).

Fix any feasible w € A ; with w,, > 0 and define d as in Lemma C.1 (move mass from m to S(m)).

1'd=0, dyl1=-1 and di.1=+1
[direction preserves the sum but transfers 1 unit from N to N¢ at first order].
Jep >0: Vee (0,60, wtede Ay
|[feasibility for small steps; nonnegativity preserved since w,, > 0, dy > 0 for £ € S|.
d

Tl Qw+edi X5) = VuQw; X3)Td < 0

[same strict coverage argument as in Lemma C.1, independent of w*|.

= Jde; € (0,60] 1 Qw+ed; Xj) < Q(w; X7) and Z(wj +edj) < ij.
jEN jEN

Constructive reduction starting from w°.

1. If no dominated donor in N has w; > 0, then ZjeN wi < ZjeN wj holds trivially by Part

C (no new dominated support can appear)
2. Otherwise, pick any dominated m € N with w;, > 0.

3. Apply Lemma D.1 to w(©® := w° to obtain w® := w® + €d™ with Q(w(l);X{;) <
Q(w®; X7), and D jeN w](-l) <jen wj(.o) [strict decrease in both rescaled loss and band

mass.
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4. Repeat the argument finitely many times (each time choosing a dominated donor in N
with positive weight), obtaining a sequence {w(r)}fzo C Ay such that Q(w("+b); X3) <

r % r+1 T
Q(w); X) and Zjerj(- < ZjerJ(. ).

5. Stop once all dominated donors in N have reduced or zero weight (this occurs in finitely

many steps since at each step some w,, | 0).

6. Denote the terminal point by w := w®) Q(w; X3) < Q(w°; Xg) and djenWj <

>_jen W; [telescopes across the finite sequence]

E. Conclusion - From @ to w* (no band-mass rebound at the optimum).
By Part C, any minimizer w* of Q(-; X{) has w};, = 0 for every dominated m € N.
Consider any feasible direction ¢ that increases band mass at a point with no dominated mass
(like w): 176 =0, 51> 0.
Such a direction must move weight into N from N¢ but, by the absence of dominance, no
strict coverage inequality is available to generate descent; KKT at the minimizer then implies
VuQw*; X5) T > 0.
Therefore any move that increases band mass from w cannot reduce the objective below Q(w; X{).
Since w* minimizes Q(-; X{) and Q(w*; X§) < Q(w; X{), the optimizer cannot place more mass
on N than w does: } ;cywi < Yoy w; < Doy w; chain the two inequalities; strict if some
dominated m € N had w;, > 0
If no dominated donor in N had positive wy,, then Part C yields >,y wj < >°.cy wj(weak

inequality). O
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A.3 Theorem 3 Proof

Theorem 7 (Exposed-mass dominance under constrained ridge). Let w(®) solve mingen , || X1 —

Xow|? and let w™ solve (13) with A\ > 0. Under Assumptions 3—4, equation Y omeN wi) <

Y omeN wﬁg).equation If Assumption 5 holds with strict inequality (14) for at least one m € N,

then equation ), w%‘) < D omenN wﬁg).equation

Local setup for Thm. 3

Fix X; e RE) Xo=[X1,...,X j] e REX V =diag(vy,...,vk) = 0.

Let n; € (0,1), ¥; =g(n;), G:=diag(¥1,...,vs), H:=X]VXy.

Let Jy(w) == || X1 — Xowl||} + AD; Piws = (X1 — Xow) V(X1 — Xow) + Aw' Gu.
Assume Ay :={w € Réo :1Tw =1} (simplex constraints).

Let w(® € argmingen, | X1 — Xow||?, w® € argmingen, Jy(w) (A > 0) (unpenalized vs.
constrained ridge minimizers).

Let 7 == Xouw® — X1, 79 := Xow® — X (residuals for fit for both solutions).
Fix N = more-exposed band, S := N¢ = safer band.

Assumptions 3, 4 and 5 are as given in the main text.

Summary of what each component does

e Part A expands Jy, and computed gradient/Hessian explicitly, fixing strict convexity. It
isolates curvature and shows uniqueness.

e Part B writes KKT and derives the identity (B.3): the directional derivative of .Jy along a
feasible d at w™ equals M Td. Tt converts “no feasible descent” into an algebraic test.

e Part C builds a concrete “band-shift” d that moves mass from an exposed m to safer
S, verifies feasibility, and evaluates the derivative via KKT. It constructs the canonical
exposure-reducing move.

e Part D compares the solutions w™ and w(® | yielding (w™)TGuw® < (w)TGw®. It
isolates the penalty improvement under ridge.

e Part E converts that inequality into a band-mass statement using bandwise 1 separation and
Jensen /Cauchy bounds; proves monotonicity by explicit derivatives. This part translates
quadratic penalty gains into linear mass dominance.

e Part F shows how strict first-order coverage forces a strict reduction in exposed mass when
an exposed donor carries positive weight under w(?). Therefore it establishes conditions for
strict (not just weak) dominance.
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Proof.

A. Quadratic expansion and derivatives of J).

I(w) = (X1 — Xow) V(X — Xow) + Aw' Gw
[definition of penalized loss|.
I(w) = X[ VX, —2(XJ VX)) "w+w Hw+ ' Gw

lexpand the quadratic form; H = XO—r V Xo.

Vedia(w) = 2Hw — 2X, VX| + 22\Gw
[differentiate].

V2 Jz(w) = 2H +2)\G = H,

[Hessian is constant; adds ridge curvature along coordinate axes].

H), -0 = J, strictly convex on R’
[by (A2)].

= unique minimizer of Jy on convex set A; exists

[Weierstrass + strict convexity].

B. KKT system and a key identity for directional derivatives.

L(w,p,v) = Jy(w)+ (1w —1) — vTw [Lagrangian; u € R, v € Réo]~

2Hw® — 2XVX| 4+ 22Guw™ + pM1 — M) =0, [stationarity]

1Tw® =1, w® >0
KKT at(w, u, pW)

v >0, [dual feasibility]

Let d € R’ be any feasible direction with 17d = 0 and, for small € > 0, w®® +ed € A .

Compute the directional derivative of the fit part:
d
Tl X1~ Xo(w™ + ed) ||} =2 (Xow™ — X1)TV(Xod) = 20V TV Xod.

[tangent direction preserving the simplex at first order].
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Compute the directional derivative of the penalty part:

d
- _OA(w(’\) +ed) " Gw™ + ed) = 20 d" Guw™
[directional derivative for the penalty term)|.
= di A (W™ + ed) = 2rVTVXod + 22 d" Gu™.
€le=

[collect both contributions].

(B.1)

Derive an equivalent expression using KKT: multiply stationarity by d
d" (2Hw® — 2X VX1 + 22Guw™ + M1 — V) = 0
[multiply stationarity by d.
2d" Hu™ —2d" X VX +2xd" GuwW + 1M 1Td — N Tg = 0.
[expand the inner products].
1"d=0 = 2d"HwW™ —2d" X/ VX, +22d"Guw® —vMTd =0,
[drop the equality constraint term].
d"Huw™ = (Xod) "V (Xouw™)
[since H = X V Xo.
= 2(Xod) "V (Xow™ — X1) +20d"Guw™N — N Tg = 0.
[substitute Xouw®™ — X; = rM].
= 2rMTVXod + 20 d Gu™ =M T4.

[rearrange to match (B.1)].

d

Combine (B.1) and (B.2): T
€

I (w(/\) + ed) =1WNTq.

e=0

[exact KKT identity: first-order change equals dual-work on d].

(B.2)

Since ™) > 0 text and d’s signs depend on its components, (B.3) is the exact first-order

change under the constraints.
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C. A band-shift direction and its sign at w®.

Fix m € N and choose o™ e Ajg) as in (A3).
[select safer convex combination that covers m at first order].
Define d € R? by d,, = -1, d; = aﬁm) (¢ €S), d;j =0 otherwise.

[move mass off m and onto safer donors in S].

1Td=-1+ o™ =0
es

[sum-to-one preserved].
Jeo>0: Vee (0,e), w™ +ede Ay
[feasible for small steps if w(M > 0].

Jx (w(’\) + ed) =N = Z Vé)\)aém) — Vr(r)b\)
LesS

4
de le=0

[use (B.3) and the definition of d].
vN =0 if wl) >0

m m

[Complementary slackness on active coordinate m].

J w™ + ed Z I/e >
Les

d

:>de

e=0

[dual feasibility and o™ > 0; no descent at the optimum.

Therefore no feasible first-order descent exists along d at w® (consistency with optimality).
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D. Variational comparison: from optimality to a {)—weighted square inequality.

Jy (w(k)) < J\ (w(O))
[optimality of w™ for the penalized problem].
1X1 = Xow @[} < (1% — Xow™|}
[optimality of w®) for unpenalized fit].
Rearrange the two inequalities:
{11X1 — Xow™M (12 — | X1 — Xow@|E} + M (wM)TGuw® — (w)TGuw®} <o0.

[subtract the inequalities to separate fit and penalty].

1% = XowM [} — X1 = Xow®[} > 0
[since w(®) minimizes the fit].

= /\{(w()‘))TGwo‘) — (w(o))TGw(O)} <0.
[move nonnegative fit gap to the other side].

A>0 = (W TGw™ < (w)TGuw®.

[divide by Al.

lexpand with G diagonal; ¢; > 0.

(D.1)

o8



E. Turning (D.1) into a band-mass comparison.

Split the sums by N and S:

S (@) > v (wfM)? <3 o (WD) 3 i (w”)

meN Les meN les
Define %" ;= min VA= max N — miny, PR = max .
VN meN Yms VN meN Yms Vs €S Ve ¥ tes 2

[bandwise extrema of penalties].

l/}%in > wg}ax and wﬁin < wﬁa}(’ wg}in < wglax
[by (A1) and N more exposed than S|.

Lower bound LHS by replacing ¢, > ¥%™ on N and 1 > %" on S:
R YD ()’ gy (wfY)? < LHS
meN lesS

[lower-bound LHS using band minima].

Upper bound RHS by replacing ¢, < ¢¥y™ on N and 1y < ¢g®* on S:

RHS < o™ Y (wd)” + v (")’

meN les
[upper-bound RHS using band maxima].
= ¢ﬁin Z (w%))Q_Fw‘rsan(wé)\))Q < %ax Z (wﬁg))Q_’_w?axZ(wéo))Q
meN LesS meN Les

[sandwich 1’s to compare sums of squares across bands].

Apply Jensen/Cauchy—Schwarz to bound sums of squares by band masses.

(> ui)2

For any nonnegative vector u, zl:u2 > G [Jensen].
2 2
2 c A 2 (I—-cy) 2 2
> () 2 g ) 2 g X ) <d 3 () < ()
meN les meN lesS

[Jensen lower bounds and concentration upper bounds|.
A 0
c,\::Zw,(fl‘), 1—c,\:Zwé ), CO::Zwﬁs), 1—60:Zw§).
meN s meN teS
[band mass notation]|.

&
N

min (1 - C)\)2

PR A 5 < PR+ PE (1 - co).

[plug the bounds into (E.1) to relate ¢\ and co).

(E.1)
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Lemma E.1 (monotonicity regions).

min 2 min c 2 max max
Define £(c) = R S+ 0 o gle) = oS (- o)
|auxiliary quadratics bounding the two sides of (x)].
, _ 2 ﬁln ¢mln 1 :2 min wmln wmln
716 = ¥ige = 2gr =9 =2y + o7 )~ 2y

[differentiate and rearrange].

vE™ /18]
R/ IN|+ g/ IS

Hence f'(c) >0 < c¢>c:= € (0,1).

[region where f increases|.

( ) — 2,(/)1’1’18,)( wmax( ) — (wmax + ¢max) . 2#}}1;1&)(

[differentiate g].

wg’nax
,l/}ﬁaX + wg‘nax

|g is increasing past a threshold strictly below 1/2].

Since Y™ > &>, ¢'(c) > 0 whenever ¢ > < 3.

Therefore f and g are strictly increasing on [¢, 1] and [1/2, 1], respectively.
[both sides monotone in the relevant upper ranges|.
Consequence of Lemma E.1 for (x).

Suppose by contradiction ¢y > cg and ¢\ V¢yg > ¢V L

B |

|assume ridge increases band mass in the monotone region].
Then f(cx) > f(co) and g(cy) > g(co) by monotonicity on these ranges.
[strict monotonicity].
But () says f(cx) < g(cp), yielding f(cy) < f(cy) (contradiction).
[upper bound on RHS cannot exceed lower bound on LHS if ¢\ > ¢o.
= ey <

[band mass under ridge cannot exceed unpenalized band mass|.
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F. Strict inequality under strict coverage.

Assume (A3) holds strictly for some m € N, and w9 > 0.
Consider the band-shift direction d of Part C at w™.

rNTY(Zm — X ) <0

[strict fit improvement toward safer combo at first order].

Using the scalar KKT on coordinates (active/inactive) we have for each j:

(™)

A \) v,
XLV f gl 4 62 =0,

[scalar KKT from Part B, active/inactive unified|.

Multiply by agm) and sum over £ € S, then subtract the equality for j = m

o ey
D0 (Xve® a7 =) = (Ve )+ £ = 4) =0
Les

[weighted sum over S minus the m equation]|.

= Zag’”)(X_’g— m) VA +)\<Z% Qj)wé @Z)mw(A)_,Z% V@ ) 4 1,0 =,
tes tes tes

[collect terms; note the v terms.
v =0 if w >0

lactive coordinate m)|.

A(Z o™ e — wmw,ﬁi)) —3 " al™(X = X)) TV £33l

les lesS lesS

[identity used to substitute penalty difference].
Compute the directional derivative explicitly using (B.1):

L]
dele=0

Iy (W™ +ed) =2rVTV (20 — X ) 4 2 ( > o™ ™ — wmwﬁﬁ’) .
Les

[directional derivative via (B.1)].
Substitute the identity above:

=2rNTY (20 — X ) =23 al™ (X — Xn) Ve 13 ™Y,
les les

[substitute the penalty identity]|.
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S al™ (X = X)) VN = bV Ty (200 X )
Les

[linearity of inner product].

I (w()‘) + ed) =0+ Zaém)ué)‘) = Zaém)yy‘) > 0.
les les

d

de

e=0

|[KKT-consistent; equality if all £ active].

Strict coverage (< 0 in fit) + (Al) lower ¢ on S) = feasible moves that reduce N-mass

cannot improve Jy at w™) Therefore the penalized solution must have strictly less N-mass than a

positive-mass w(®) on the strictly dominated m|. = Y omeN wy({l\) <D omeN wﬁg)., entailing strict

band-mass dominance.

G. Conclusion.

Part E establishes Z wffl‘) < Z ng).
meN meN

|[weak dominance from variational bounds + monotonicity].
Part F shows strict inequality when (A3) is strict for some m € N with wﬁ,g) > 0.

[strict dominance requires a strictly covered exposed donor carrying mass in w(o)].
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A.4 Theorem 4 Proof

Theorem 8 (Exposure-weighted unconstrained ridge: bias envelope and tuning monotonicity).
Let wYB(\) solve (17) with A > 0 under the exposure-aligned schedule in Assumption 3. For any
erposed set N # () with ¢, := minjen ¢; > 0,

S R] < VINTe 2 D) e R )],

JEN

and the map X\ — HD;/2'LUUR()\)”2 is nonincreasing with limy_, s \|D11/2wUR()\)H2 = 0. Conse-
quently, under the localized, time-homogeneous model of Section 2 (Theorem 5),

RO —m| < plnl VINTER? | Dy *wV RV,

and, more generally, for any nonnegative exposure-aligned profile {0¢} with V¥m > 1Yy = e > dut,

D wi "N & < 16x2ll2 72 || DY 0B,
J

Hence the right-hand side is nonincreasing in A and vanishes as A — oo.

Local setup for Thm. 8

Define treatment predictors, donor matrix and positive-definite metric as X; € RX, X, =
(X 1,...,X j] € REXI V = diag(vy,...,vk) = 0.

Set reach scores, exposure-aligned penalties, and diagonal penalty operator: n; € (0,1), %; =
g(nj), Dy := diag(¢1,...,1y), g strictly decreasing, bounded away from {0, 1}.

Define the unconstrained ridge problem as a fit term + exposure-weighted ridge penalty:

1/2

Ia(w) = [ X1 = Xow|} + XD *wlB, A= 0.

Hold no simplex constraints, having a feasible set enlarged relative to SCM standard problems:

w € R7 (may be negative; need not sum to one).

Assumptions 3, 4 and 5 are as given in the main text.

Summary of what each component does

e Part A derives the normal equations and closed form wVR(\) = (X VXo+ADy) 1 X, V X.
In short, it makes the program self-contained and fixes notation for spectral bounds.

e Part B proves the exposed-sum bound | djen w;| </ |N|g;/2 ||D11/2w\|2. This replaces
mass arguments (invalid without simplex) by a clean ¢y control aligned with exposure.

e Part C establishes ridge-path monotonicity HD}/ QU}UR()\>H2 nonincreasing in A, and — 0 as
A — oo via a resolvent/spectral bound. This part gives a tuning parameter that uniformly
shrinks the exposure-weighted norm.

e Part D translates these ingredients into bias envelopes: contamination p 7y ZjeN ngR is

bounded by a term that is (i) nonincreasing in A and (ii) vanishes as A\ — oco; the same
logic extends to any nonnegative, exposure-aligned profile supported on N
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Proof.

A. Normal equations and closed form (for completeness).

Ia(w) = (X1 — Xow) V(X1 — Xow) + Aw ' Dyw
[expand objective].
Vwda(w) = —2X, V(X1 — Xow) + 2ADyw
[differentiate term-by-term].
Set gradient to zero:
—2X) VX; +2X] VXow + 2ADyw = 0
[first-order optimality].
(Xy VXo+ADy)w = X VX;
[normal equations|.
A>0& Dy =0 = XJVXg+ADy =0
[strict positive definiteness; (A2)].
= wVB(\) = (X VXo+ADy) ' Xy VX,

[closed form (18)].
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B. Exposed-sum bound
‘ij’ = |1 wy|
JjEN
[notation: wy restriction to N, 1y all-ones on N].
< [Anll2 w2
[Cauchy—Schwarz].
= VIV Jwxls
[Euclidean norm of 1y is /|N|].
in-1/2n1/2
lolle = (1D, "Dy wn]l,

2Pl on N,

linsert I = D, "

—1/2 1/2
<Dy lopy 1Dy 2wl

[operator-norm bound].
—-1/2 =12 . ]
||D¢ ||0p,N —yN ) %N = gfélj{}wj >0
[largest singular value on N equals 1/ n}\i[n .
1/2 1/2

1Dy *wnll2 < 1Dy w2
[restriction cannot increase the norm].

—1/2 1/2

= w2 < v 1Dy 0]l

[combine the last two displays].

= [ Y w| = VINu 2 ID Pl (UR.1)

JEN

[exposed-sum controlled by the exposure-weighted ¢o norm]|.
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C. Ridge path monotonicity.

Write Jy(w) = L(w) + AP(w), L(w) := || X1 — Xow|}, P(w) = |Dy/*w]3.
[separate fit and penalty].
0< M <Ay, wy:i= wUR()\l), Wy 1= wUR(/\g).
[pick two tuning values].
L(wy) + MiP(w1) < L(wa) + A1 P(wa)
[optimality of wy for Jy,].
L(wz2) + A2 P(w2) < L(wi) + AP (w1)
|optimality of wsy for Jy,|.
Add the two: (L(w1) — L(w2)) + (L(w2) — L(w1)) + A P(w1) + Ao P(w2)
< M P(w2) + Mo P(wy).
[cancel L terms].
A P(wr) + A2 P(w2) < A P(wz2) + Ao P(wr)
[rearrange].
(A2 — A1) (P(wl) — P(wg)) > 0
[A2 > A
= P(w) < Pw) <= [D %" ()2 < D% (N2 (UR2)
[monotone nonincreasing in A|.
Limit as A — oo: wV#(\) = (X, VXo + ADy) ' XJ VX.
[closed form].
1

1
XoVXo+ADy) Hop € ——s = —
1o Vo @) lop < AMumin(Dy) A9

[spectral bound: Apmin(A + AB) > A Apin(B) for A >0, B > 0].

1/2
1D, 2wV ()|l2

1/2

< Dy

lop [1(X0 VX0 + ADy)lop 1X0 VX1l
[submultiplicativity of operator norm)|.

=
= ﬁ By IXJ VX1l — 0 asA— oo (UR.3)

[¢ = mjax@bj < oo by (A1)].
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D Bias bounds under localized and aligned spillovers

Localized, time-homogeneous spillovers (Theorem 5): 777\ — 7 = pry Z wJUR()\).
JEN

[contamination channel depends on exposed sum].

R =] = plnl | D wl RO
JEN

[absolute distortion]|.
_ 1/2
< plnl VINTE 2D P ),
[apply (UR.1) with w = wVE())].
By (UR.2) and (UR.3), RHS is nonincreasing in A and — 0 as A — oo.

[tuning monotonicity and vanishing envelope|.

General nonnegative exposure-aligned profile {§;;} supported on N:

dowit NG = Y wi TN b
j

JEN
[localized exposure concentrated on N].

< o ellz oy (V)12

|Cauchy—Schwarz on N|.
< Iwllz w2 1D "0 F ) 2
[use [lw |2 < w1 /2(1Dy *wl|2 as in Part 1].
Hence the envelope is nonincreasing in A and vanishes as A\ — oo by (UR.2)-(UR.3).

[same monotonicity and limit|.
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A.5 Spatial reach mapping

To avoid any tuning on outcomes, we calibrate f from the empirical distribution of distances

alone using a logistic map,

1

1+ exp{—r(d—c)} (21)

fld) =

Let dr, and dy denote the (q,1 — ¢) quantiles of {d(j,p)};xp for a small ¢; we take ¢ = 0.025.
Fix a tail level € € (0,1/2); we take ¢ = 0.025. Imposing f(dr) =€ and f(dy) =1 — € yields
_durd 2log()
N 2 ’ N dy —dp,
This anchors n; = f(d(j,p)) smoothly over (¢,1 — ) so that proximate donors receive 7; near e

and distant donors near 1 —e. We maintain 7; € [¢,1 — ¢] for all donors to keep the optimization

well-posed.

In applied work, ¢ and x can and should be calibrated with auxiliary information and domain

knowledge.

Examples include: (i) setting ¢ to a substantively meaningful distance (e.g., a commuting or
media-market radius) and choosing k so that f halves over a prespecified range; (ii) mapping
d to network-path lengths derived from mobility /commuting matrices and anchoring (dr, dy)
to empirical percentiles of those effective distances; or (iii) selecting (c, k) so that f matches a
pre-specified decay (e.g., half-life) suggested by prior studies of diffusion. In our simulations and
applications, the quantile-anchored defaults (¢,&) = (0.025,0.025) provided stable behavior and

transparent reporting without outcome-based tuning.
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A.6 Ring geometry and mapping from continuous to discretized exposure

scores

Figure A.1 illustrates the ring geometry (grid with concentric circles centered at p*) and the

mapping from continuous distance d;p« to discretized exposure scores si = k(dip+;0).)
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A.7 Alternative rings contrast

i

P

(a) 2 vs 3 Contrast for Missouri, (b) 3 vs 4 Contrast for Colorado,
p=0.9591 p = 0.5102041

Figure 6: Alternative contrasts
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