Synthetic Control Under Interference: Detecting and Correcting Bias

Joao Alipio-Correa

Political Science & Statistics | University of Pittsburgh

SCM in Political Science

SCM emerged as an important tool for analyzing rare political events:

- Civil wars: Coercion, governance, and political behavior in civil war. Journal of Peace Research, 2024
- Polarization: Partisan Enclaves and Information Bazaars: Mapping Selective Exposure to News. Journal of Politics, 2022
- Far Right: Do Voters Polarize When Radical Parties Enter Parliament? American Journal of Political Science, 2019
- Religion & Politics: Government Religious Discrimination, Support of Religion, and Societal Violence in Western Democracies. Comparative Political Studies, 2024
- Political Economy: From Rents to Welfare: Why Are Some Oil-Rich States Generous to Their People? American Political Science Review, 2024
- Regimes: The Rush to Personalize: Power Concentration after Failed Coups in Dictatorships.
 British Journal of Political Science, 2023
- Institutional change: Comparative politics and the synthetic control method. American Journal of Political Science, 2015

Causal Inference and Interference

When policies, conflicts, or shocks *spill over* to neighboring regions, do we still have valid donor pools under Synthetic Control?

Outline

- 1. Quick SCM & SUTVA Refresher
- 2. Detecting interference
- 3. Bias-Correction Toolkit
- 4. Simulation Performance
- 5. Interference in Applied Research
- 6. German Reunification Re-analysis

What is the Synthetic Control Method (SCM)?

- Enables inference with a small number (or single) treated units;
- Build a synthetic version of the treated unit as a counterfactual weighting unaffected units.
- · Potential outcomes for treated unit:
 - Y_{1t}^N : Outcome in absence of intervention (counterfactual).
 - Y_{1t}^l : Outcome under intervention.
- · Treatment effect:

$$au_{1t} = Y_{1t}^I - Y_{1t}^N, \quad t > T_0.$$

SCM: How It Works

$$\hat{Y}_{1t}^{N} = \sum_{j=2}^{J+1} w_j Y_{jt}, \quad t > T_0.$$

• Optimal weights W^* : Minimize discrepancy in pre-treatment characteristics and $\|\cdot\|_V$ reflects predictors importance:

SCM and SUTVA

· Stable Unit Treatment Value Assumption (SUTVA):

$$Y_{it}(Z_i, Z_{-i}) = Y_{it}(Z_i) \quad \forall i$$

No interference: No unit's outcome depends on other units' treatment status.

- Crucial Assumption: The donor units remain *untreated*. Any violation (e.g., partial exposure) can bias the synthetic estimate.
- SUTVA violation: Suppose donor j receives an interference term δ_{it} . The synthetic counterfactual becomes

$$\hat{Y}_{it}^{N} = \sum_{j\neq i} w_{j} (Y_{jt}^{N} + \delta_{jt}),$$

so the estimated effect $\hat{\tau}_{it}$ deviates by $\sum_{j} w_{j} \delta_{jt}$ from the true τ_{it} .

6

Stages of SCM Construction

1: Units

3: Units for Synthetic Control

2: Single Treated Unit

4: Treatment Effect

Stages of SCM Construction

3: Units for Synthetic Control

2: Treatment diffusion

4: Contaminated Treatment Effect

Simulated data

Units map

Simulated data

Units map

Missouri being treated

Simulated data

Simulated data for an intervention in Missouri with true ATT $\tau=4$ and interfering the outcome for nearby units by a parameter of $\rho=0.6$

Closer units are more affected by interference than farther away ones. But how can we compare and test if this interference is at play?

Contrast setup

Contrast for Missouri

Let $i \in \mathcal{U} = \{1, ..., N\}$ index units (in this case, US states)

Fix the treated unit $(p \in \mathcal{U})$ at the center and compute distances d_{ip} partitioning the space in non-overlapping rings

$$c_0 < c_1 < \cdots < c_K$$

Contrast setup

Contrast for Missouri

Let $i \in \mathcal{U} = \{1, ..., N\}$ index units (in this case, US states)

Fix the treated unit $(p \in \mathcal{U})$ at the center and compute distances d_{ip} partitioning the space in non-overlapping rings

$$c_0 < c_1 < \cdots < c_K$$

Each ring being identified as:

$$r_{ip} = k \iff c_{k-1} \le d_{ip} < c_k, \quad k = 1, \dots, K$$

Then assign units to fully disjoint rings according to their distance from *p*:

- Focus ring: $R_A \subset \{1, \dots, Q\}$
- Comparison ring: $R_B \subset \{Q+1,\ldots,K\}$

And define groups:

- $\cdot A_p = \{i \neq p : r_{ip} \in R_A\}$
- $B_p = \{i \neq p : r_{ip} \in R_B\}$

Contrast setup - Z value

But what are we comparing?

Let $t \in \mathcal{T}$ index time, T_0 be the treatment period for unit p, and Y_{it} represent the outcome

Define two disjoint sets of periods for each window w:

$$\mathcal{T}_w^{pre}, \mathcal{T}_w^{post} \subset \mathcal{T}, \quad \mathcal{T}_w^{pre} \cap \mathcal{T}_w^{post} = \emptyset$$

Contrast setup - Z value

But what are we comparing?

Let $t \in \mathcal{T}$ index time, T_0 be the treatment period for unit p, and Y_{it} represent the outcome

Define two disjoint sets of periods for each window w:

$$\mathcal{T}_w^{\text{pre}}, \mathcal{T}_w^{\text{post}} \subset \mathcal{T}, \quad \mathcal{T}_w^{\text{pre}} \cap \mathcal{T}_w^{\text{post}} = \emptyset$$

And set windows of interest for the difference in outcome, such as:

W	\mathcal{T}_{w}^{pre}	$\mathcal{T}_{\scriptscriptstyle{W}}^{post}$
full	$\{t < T_0\}$	$\{t > T_0\}$
year-1	$\{T_0 - 1\}$	$\{T_0 + 1\}$
sym-n	$\{T_0-n,\ldots,T_0-1\}$	$\{T_0+1,\ldots,T_0+n\}$

And for every unit i and window w, define a difference-in-means statistic:

$$Z_i^{(w)} = \overline{Y}_{i, post(w)} - \overline{Y}_{i, pre(w)}$$

where:
$$\bar{Y}_{i,post(w)} = \frac{1}{|\mathcal{T}_w^{post}|} \sum_{t \in \mathcal{T}^{post}} Y_{it}$$

and
$$\bar{Y}_{i,\text{pre}(w)} = \frac{1}{|\mathcal{T}_w^{\text{pre}}|} \sum_{t \in \mathcal{T}_w^{\text{pre}}} Y_{it}$$

Contrast setup - first test

 $Z_i^{(w)} \rightarrow$ average outcome variation for each *i* between post-pre periods in window *w*.

Anomalous values in units nearby the treated hint at potential interference

Contrast setup - first test

 $Z_i^{(w)} \rightarrow$ average outcome variation for each i between post-pre periods in window w.

Anomalous values in units nearby the treated hint at potential interference

state	Z ^(full)	Z ^(year-1)	Z ^(sym-3)
Missouri Iowa Colorado	4.0066 2.3640 -0.0414	3.9159 2.4193 -0.1069	3.9381 2.3539 0.0060
Vermont	0.02501	-0.1115	-0.0886

For each window w, collect $Z_i^{(w)}$ for $i \in A_p$ and $Z_i^{(w)}$ for $i \in B_p$, and let

$$\bar{Z}_{A_p}^{(w)} = \frac{1}{|A_p|} \sum_{i \in A_p} Z_i^{(w)}, \quad \bar{Z}_{B_p}^{(w)} = \frac{1}{|B_p|} \sum_{i \in B_p} Z_i^{(w)}$$

denote the group means for each ring set and build:

$$t_{p} = \frac{\bar{Z}_{Ap} - \bar{Z}_{Bp}}{\sqrt{S_{P}^{2} \left(\frac{1}{|A_{P}|} + \frac{1}{|B_{P}|}\right)}}$$

Large $|t_p| \Rightarrow$ evidence that proximity ring(s) differ in mean outcome change relative to farther rings

Can we reject the null of no interference?

Checking whether average
$$\neq$$
 units farther away from for nearby units treated unit (around treatment)

Can we reject the null of no interference?

Randomization inference:

$$H_0: \left\{Z_i^{(w)}\right\}_{i \in \mathcal{U}}$$
 is invariant to which unit is labelled "treated".

i.e.: Pattern of interference around treated unit is no different than the pattern around any other unit in the space

- 1. Compute t_p for every $p \in \mathcal{U}$ as above.
- 2. Let t_0 be the statistic for the actual treated unit $p = p^*$.
- 3. Exact two-sided p-value:

$$\hat{\rho} = \frac{1 + \sum_{p \in \mathcal{U}} \mathbf{1}(|t_p| \ge |t_0|)}{N+1}$$

- 1. Compute t_p for every $p \in \mathcal{U}$ as above.
- 2. Let t_0 be the statistic for the actual treated unit $p = p^*$.
- 3. Exact two-sided *p*-value:

$$\hat{p} = \frac{1 + \sum_{p \in \mathcal{U}} 1(|t_p| \ge |t_0|)}{N + 1}$$

Contrast for Vermont

- 1. Compute t_p for every $p \in \mathcal{U}$ as above.
- 2. Let t_0 be the statistic for the actual treated unit $p = p^*$.
- 3. Exact two-sided *p*-value:

$$\hat{\rho} = \frac{1 + \sum_{p \in \mathcal{U}} 1(|t_p| \ge |t_0|)}{N + 1}$$

Contrast for Vermont

Contrast for Colorado

- 1. Compute t_p for every $p \in \mathcal{U}$ as above.
- 2. Let t_0 be the statistic for the actual treated unit $p = p^*$.
- 3. Exact two-sided *p*-value:

$$\hat{p} = \frac{1 + \sum_{p \in \mathcal{U}} 1(|t_p| \ge |t_0|)}{N + 1}$$

Contrast for Vermont

Contrast for Colorado

Contrast for Iowa

Algorithm

- 1. Compute t_p for every $p \in \mathcal{U}$ as above.
- 2. Let t_0 be the statistic for the actual treated unit $p = p^*$.
- 3. Exact two-sided p-value:

$$\hat{p} = \frac{1 + \sum_{p \in \mathcal{U}} \mathbf{1}(|t_p| \ge |t_0|)}{N + 1}$$

state	t_p	A_p	Вр
MO	4.4207	AR, IL, IN,	AL, AZ, CA,
VT	-0.2169	CT, DE, ME,	AL, AZ, CO,
CO	0.3428	AZ, MT, NV,	AL, CA, CT,
IA	-0.3312	MI, MN, SD,	AL, AZ, CA,

And from this simulated scenario we obtained p-value = 0.0408

Contrast setup - alternative contrasts

Where does it end?

Detecting whether interference is present \checkmark

Detecting where interference is no longer statistically significant:

Contrast setup - alternative contrasts

Where does it end?

Detecting whether interference is present ✓

Detecting where interference is no longer statistically significant:

Instead of contrasting

$$A_{p^*} = \{i \neq p^* : r_{ip^*} = 1\} \text{ vs.}$$
 $B_{p^*} = \{i \neq p^* : r_{ip^*} \in \{2, 3, 4, 5\} \}$
to obtain the standard $t_{p^*}^{(1 \text{ vs } 2:5)}$

Contrast:
$$A_{p^*} = \{i \neq p^* : r_{ip^*} = 2\}$$
 vs.
 $B_{p^*} = \{i \neq p^* : r_{ip^*} \in 3\} \rightarrow t_{p^*}^{(2 \text{ vs } 3)}$

Contrast setup - alternative contrasts

Where does it end?

Detecting whether interference is present ✓

Detecting where interference is no longer statistically significant:

Instead of contrasting

$$A_{p^*} = \{i \neq p^* : r_{ip^*} = 1\} \text{ vs.}$$

 $B_{p^*} = \{i \neq p^* : r_{ip^*} \in \{2, 3, 4, 5\}$
to obtain the standard $t_{p^*}^{(1 \text{ vs } 2:5)}$

Contrast:
$$A_{p^*} = \{i \neq p^* : r_{ip^*} = 2\}$$
 vs. $B_{p^*} = \{i \neq p^* : r_{ip^*} \in 3\} \rightarrow t_{p^*}^{(2 \text{ vs } 3)}$

2 vs 3 Contrast for Missouri, p = 0.9591

3 vs 4 Contrast for Colorado, p = 0.5102041

Interference Confirmed. Now What?

Interference ✓

Two options:

- 1. Keeping them unmodified leads to biased synthetic estimates.
- 2. Simply dropping suspect donors might degrade the pre-treatment match.

Interference Confirmed. Now What?

Interference ✓

Two options:

- 1. Keeping them unmodified leads to biased synthetic estimates.
- 2. Simply dropping suspect donors might degrade the pre-treatment match.
- 2.1 But at least now we are able to make an informed decision on which units to drop

Interference Confirmed. Now What?

Interference ✓

Two options:

- 1. Keeping them unmodified leads to biased synthetic estimates.
- 2. Simply dropping suspect donors might degrade the pre-treatment match.
- 2.1 But at least now we are able to make an informed decision on which units to drop
 - 3. Adjust for it: Use a secondary set of weights to attenuate contamination in the donor pool
 Spatial reach measure as the weights

Spatial Reach: A Continuous Proximity Index

• For donor j, let d_j be its distance to the treated unit.

$$SR_j = \frac{1}{1 + \exp[-\kappa(d_j - c)]},$$

- c is typically the mean or median distance to center the logistic curve.
- κ scales how steeply SR_i transitions from near 0 to near 1.
- Parameter Tuning: κ trimmed between the 2.5% and 97.5% percentiles of $\{d_j\}$, ensuring a smooth but complete range.
- Interpretation: $SR_j \approx 0$ if donor j is very close, and ≈ 1 if it is far.

Bias Correction Strategies

Solution	Optimization	Simplex	Consequence
Rescaling	$\min_{\mathbf{W}} \ \mathbf{X}_1 - \mathbf{X}_0^* \mathbf{w}_j\ ^2$ with $X_{k,j}^* = X_{k,j} \times SR_j$	1	Downweights exposed units; Retains convex weights
Ridge constrained	$\min_{\mathbf{w}} \ \mathbf{X}_1 - \mathbf{X}_0 \mathbf{w}_j\ ^2 + \lambda \sum_{j} \mathbf{SR}_j \mathbf{w}_j^2$	✓	Penalize large SCM weights Moderate contamination
Ridge unconstrained	$\min_{w} \ \mathbf{X}_{1} - \mathbf{X}_{0} w_{j}\ ^{2} + \lambda \sum_{j} SR_{j} w_{j}^{2}$	×	Allows negative SCM weights Aggressively offset contamination

Simplex constraint: $w_j \ge 0$, $\sum_i w_j = 1$

- \cdot Units are only allowed to have positive weights
- · Unit weights add up to 1

US Simulation

Setup: Intervention in Missouri with true effect size $\tau=4$ and spillover intensity $\rho=0.6$.

Compare the uncorrected biased SCM versus the three correction approaches

Metrics: Bias in the estimated ATT, pre-treatment RMSE, and CRPS.

US Simulation results

Consistent across all effect sizes τ and spillover intensity ρ

Interference in Applied Research

Abadie et al (2003) Conflict in the Basque p = 0.22

Abadie et al (2003) Conflict in the Basque p = 0.22

Abadie et al (2015) German Reunification p = 0.46

Abadie et al (2003) Conflict in the Basque p = 0.22

Ben-Michael et al (2021) Kansas tax cut p = 0.18

Abadie et al (2015) German Reunification p = 0.46

Abadie et al (2003) Conflict in the Basque p = 0.22

Ben-Michael et al (2021) Kansas tax cut p = 0.18

Abadie et al (2015) German Reunification p = 0.46

Kikuta (2020); Civil war and deforestation p = 0.33

Application	Coverage	Interference
Abadie et al (2003)	✓	×
Ben-Michael et al (2021)	✓	×
Abadie et al (2015)	X	×
Kikuta (2019)	Х	×

Application	Coverage	Interference
Abadie et al (2003)	/	×
Ben-Michael et al (2021)	✓	X
Abadie et al (2015)	×	X
Kikuta (2019)	×	X
Expanded German Reunification	✓	✓

Application	Coverage	Interference
Abadie et al (2003)	/	×
Ben-Michael et al (2021)	✓	X
Abadie et al (2015)	×	X
Kikuta (2019)	×	X
Expanded German Reunification	✓	✓

Abadie et al (2015) German Reunification p = 0.46

Application	Coverage	Interference
Abadie et al (2003)	/	Х
Ben-Michael et al (2021)	✓	X
Abadie et al (2015)	×	X
Kikuta (2019)	×	X
Expanded German Reunification	✓	✓

Abadie et al (2015) German Reunification p = 0.46

Expanded German Reunification p = 0.016

Researchers try to address SUTVA violations and patterns of interference by removing units \rightarrow results conditioned on contagion

Risk → dropping too many units

Under Potential Outcomes, the DGP and a suitable identification strategy depends on: empirics AND how the missing potential outcome is set up

• In the SCM case: which units are in the donor pool

Replication Examples

Comparative politics and the synthetic control method (Abadie, Diamond, & Hainmueller, 2015): German Reunification

Metric	Germany
ATT	-1549.9
Pre-RMSE	119.08
ATT	-1601.5
Pre-RMSE	279.03
ATT	-1103.4
Pre-RMSE	80.43
ATT	136.1
Pre-RMSE	59.5
	ATT Pre-RMSE ATT Pre-RMSE ATT Pre-RMSE ATT ATT ATT

Rescaling adjusted for contamination \rightarrow larger effect Constrained Ridge adjust for contamination and large weights \rightarrow attenuation Unconstrained Ridge extrapolate simplex for aggressive correction \rightarrow reversal

Concluding remarks - Detection

A) Detection

- Coverage: Ensure proper donor units coverage to compose the missing potential outcome;
- Detection test: Using randomization inference, assess whether interference is at place in the empirical setting;
- Alternative contrast: By adapting the contrast, identify where interference is no longer detected;
- Detect Interference First: If no violation is detected, standard SCM suffices;

Concluding remarks - Correction

B) Correction

- SR weight: If interference → subject the SCM optimization problem to network-specific weights;
- Minor to moderate interference: Rescaling or Constrained Ridge can mitigate moderate bias while retaining the notion of a convex combination.;
- Severe Interference: Unconstrained Ridge achieves lower bias at the cost of extrapolating out of the simplex;

Ongoing Extensions

Inverse Propensity Weighting for Rescaling Approach

HT-Hájek Spatial Weights

Spatial-reach f(d) as propensity to avoid spillover: $\pi_i = 1 - f(d_{iD})$

Use stabilized Horvitz–Thompson weights $w_i = \frac{1/\pi_i}{\sum_j 1/\pi_j} \text{ inside SCM}$

- · Multiple Comparison & Dynamic Networks
- · Sensitivity to Interference

Inject controlled spillovers in outcomes & covariates: intensity $\rho \in [0, 1]$, decay φ

Re-run SCM over a (ρ, φ) grid; track standardized shift

Contours show ATT shift required to overturn conclusions

(Lighter \rightarrow larger ATT shift)